Effect of K2O:Al2O3 Ratio on Crystallization Phenomena and Microstructure of Lithium Silicate Glass-Ceramics

IF 1.5 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Transactions of the Indian Ceramic Society Pub Date : 2021-10-02 DOI:10.1080/0371750X.2021.2001693
Santa Kolay, P. Bhargava
{"title":"Effect of K2O:Al2O3 Ratio on Crystallization Phenomena and Microstructure of Lithium Silicate Glass-Ceramics","authors":"Santa Kolay, P. Bhargava","doi":"10.1080/0371750X.2021.2001693","DOIUrl":null,"url":null,"abstract":"K2O plays an important role as glass modifier in glass systems. In the present study,the effect of K2O:Al2O3 ratio on crystallization and microstructural evolution in Li2O-SiO2- K2O-MgO-Al2O3-ZnO-ZrO2-P2O5 glass system has been reported. K2O mol% has been varied from 1 to 3 mol% while keeping Al2O3 at 2 mol%. The glass structure was analyzed by MAS-NMR spectroscopy. Heat treated glass systems were studied by using XRD, SEM and DTA to analyse the sintering and crystallization behavior. Increased amount of K2O modified the role of Al2O3, which acted as glass network former and formed [AlO4/2] tetrahedron unit, which eventually polymerized the glass structure. Consequently, lithium disilicate (LS2) crystallization was suppressed and crystallization of lithium metasilicate (LS) was promoted. As a result, while in the sample with 1 mol% K2O LS2 appeared as the main crystalline phase and LS as minor phase, 3 mol% K2O samples did not show any lithium disilicate throughout the sintering temperature range. The K2O:Al2O3 ratio did not have a significant impact on densification of these glass-ceramics. GRAPHICAL ABSTRACT","PeriodicalId":23233,"journal":{"name":"Transactions of the Indian Ceramic Society","volume":"80 1","pages":"242 - 250"},"PeriodicalIF":1.5000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Indian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/0371750X.2021.2001693","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 3

Abstract

K2O plays an important role as glass modifier in glass systems. In the present study,the effect of K2O:Al2O3 ratio on crystallization and microstructural evolution in Li2O-SiO2- K2O-MgO-Al2O3-ZnO-ZrO2-P2O5 glass system has been reported. K2O mol% has been varied from 1 to 3 mol% while keeping Al2O3 at 2 mol%. The glass structure was analyzed by MAS-NMR spectroscopy. Heat treated glass systems were studied by using XRD, SEM and DTA to analyse the sintering and crystallization behavior. Increased amount of K2O modified the role of Al2O3, which acted as glass network former and formed [AlO4/2] tetrahedron unit, which eventually polymerized the glass structure. Consequently, lithium disilicate (LS2) crystallization was suppressed and crystallization of lithium metasilicate (LS) was promoted. As a result, while in the sample with 1 mol% K2O LS2 appeared as the main crystalline phase and LS as minor phase, 3 mol% K2O samples did not show any lithium disilicate throughout the sintering temperature range. The K2O:Al2O3 ratio did not have a significant impact on densification of these glass-ceramics. GRAPHICAL ABSTRACT
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
K2O:Al2O3配比对硅酸锂微晶玻璃结晶现象及微观结构的影响
K2O在玻璃体系中起着重要的玻璃改性作用。本研究报道了K2O:Al2O3比例对Li2O-SiO2-K2O-MgO-Al2O3-ZnO-ZrO2-P2O5玻璃体系结晶和微观结构演变的影响。K2O摩尔%在1至3摩尔%之间变化,同时将Al2O3保持在2摩尔%。通过MAS-NMR光谱分析玻璃结构。采用XRD、SEM和DTA对热处理玻璃体系的烧结结晶行为进行了研究。K2O含量的增加改变了Al2O3的作用,Al2O3作为玻璃网络形成剂,形成[AlO4/2]四面体单元,最终使玻璃结构聚合。因此,抑制了二硅酸锂(LS2)的结晶,促进了偏硅酸锂(LS)的结晶。结果,在具有1mol%K2O LS2作为主结晶相和LS作为副相的样品中,3mol%K20样品在整个烧结温度范围内没有显示任何二硅酸锂。K2O:Al2O3的比例对这些玻璃陶瓷的致密化没有显著影响。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transactions of the Indian Ceramic Society
Transactions of the Indian Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
2.40
自引率
8.30%
发文量
12
审稿时长
2.3 months
期刊介绍: Transactions of the Indian Ceramic Society is a quarterly Journal devoted to current scientific research, technology and industry-related news on glass and ceramics. The Journal covers subjects such as the chemical, mechanical, optical, electronic and spectroscopic properties of glass and ceramics, and characterization of materials belonging to this family. The Editor invites original research papers, topical reviews, opinions and achievements, as well as industry profiles for publication. The contributions should be accompanied by abstracts, keywords and other details, as outlined in the Instructions for Authors section. News, views and other comments on activities of specific industries and organizations, and also analyses of industrial scenarios are also welcome.
期刊最新文献
Effect of Yb2O3 Addition and Sintering Temperature on the Densification Behavior of Magnesium Aluminate Spinel Powder Perovskite Layer Structure (PLS) Piezoceramics for High Temperature Applications: A Review Effect of Corrosion Inhibitor Pyrovanadate Ions on Microstructure and Corrosion Resistance of MgAl Layered Double Hydroxide Films on LA43M Mg-Li Alloy Doping Mn Induced Modification on the Crystal Structure, Morphology and Optical Properties of Mechanically Activated SrTiO3 Powders Ballistic Resistance of Silicon-Carbide-Based Ceramic and Ultrahigh-Molecular-Weight Polyethylene Composite Armor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1