Z. I. Böröczki, M. Szieberth, A. Rineiski, F. Gabrielli
{"title":"On the Effect of Angular and Spatial Discretization on Perturbation Calculations","authors":"Z. I. Böröczki, M. Szieberth, A. Rineiski, F. Gabrielli","doi":"10.1080/23324309.2020.1834407","DOIUrl":null,"url":null,"abstract":"Abstract In this article, different angular flux discretization options, namely discrete ordinates representation and spherical harmonics expansion are compared from the viewpoint of the accuracy of perturbation calculations. The PARTISN discrete ordinates neutron transport solver was coupled with the SEnTRi code, developed at BME, in order to perform perturbation theory calculations in different types of geometry descriptions and angular representations. With the help of the implemented code, the effect of the angular and spatial discretization on the results of perturbation theory calculations was investigated. Exact matches were observed in Cartesian geometries with the direct perturbation method when the discrete ordinates angular representation was used, and small discrepancies were found when the spherical harmonics expansion was applied. In cylindrical geometries, slight differences were observed with both angular expansions, which originate from the nature of the adjoint transport operator in curvilinear coordinate systems. The differences can be reduced to a negligible level with increased expansion order in both cases. Small discrepancies can have a significant effect in sensitivity, uncertainty and transient calculations, which that for high accuracy calculation the discrete ordinates representation of the angular dependent flux should be used or sufficiently high expansion order with the spherical harmonics must be applied.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"50 1","pages":"347 - 363"},"PeriodicalIF":0.7000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23324309.2020.1834407","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2020.1834407","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, different angular flux discretization options, namely discrete ordinates representation and spherical harmonics expansion are compared from the viewpoint of the accuracy of perturbation calculations. The PARTISN discrete ordinates neutron transport solver was coupled with the SEnTRi code, developed at BME, in order to perform perturbation theory calculations in different types of geometry descriptions and angular representations. With the help of the implemented code, the effect of the angular and spatial discretization on the results of perturbation theory calculations was investigated. Exact matches were observed in Cartesian geometries with the direct perturbation method when the discrete ordinates angular representation was used, and small discrepancies were found when the spherical harmonics expansion was applied. In cylindrical geometries, slight differences were observed with both angular expansions, which originate from the nature of the adjoint transport operator in curvilinear coordinate systems. The differences can be reduced to a negligible level with increased expansion order in both cases. Small discrepancies can have a significant effect in sensitivity, uncertainty and transient calculations, which that for high accuracy calculation the discrete ordinates representation of the angular dependent flux should be used or sufficiently high expansion order with the spherical harmonics must be applied.
期刊介绍:
Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.