WHAT DO INDONESIAN NETIZENS THINK ABOUT THE EMONEY? : A SENTIMENT ANALYSIS WITH MACHINE LEARNING

Yan Putra Timur, R. Ratnasari, T. Hadi, D. P. Sari
{"title":"WHAT DO INDONESIAN NETIZENS THINK ABOUT THE EMONEY? : A SENTIMENT ANALYSIS WITH MACHINE LEARNING","authors":"Yan Putra Timur, R. Ratnasari, T. Hadi, D. P. Sari","doi":"10.20473/jraba.v8i1.44940","DOIUrl":null,"url":null,"abstract":"This study aims to identify the most popular topics and words in conversations in cyberspace with the issue of E-Money. In addition, the research aims to find out how netizens feel about E-Money with the help of Machine Learning. This study uses a quantitative method with a sentiment analysis approach using the Machine Learning program, namely Orange Data Mining. The data used are tweets originating from Twitter that were crawled from April 5, 2023, to April 12, 2023. Researchers used the keywords E-Money,\" \"Electronic Money,\" and \"Electronic Money\" to get a total of 800 tweets. The results showed that the words \"Money,\" \"Deposit,\" and \"Tools\" are the three words that appear most frequently in discussions of E-Money on Twitter, which is a registration procedure for using E-Money for the first time. In addition, E-Money is widely discussed in tweets in the form of Quizzes or giveaways, so in these tweets, E-money is used as a medium for transferring funds. Overall, the sentiment shown by netizens on Twitter is positive, with emotions dominated by feelings of joy and surprise towards E-Money. On the other hand, a tiny number still shows negatively, especially when experiencing technical problems when using E-Money, so concerns arise about the security of their money and personal data. Then the results of this study can be used by E-Money issuers as evaluation material to continue improving the security system so that E-Money users feel safe and satisfied and will continue to use E-Money for an extended period.","PeriodicalId":31779,"journal":{"name":"Jurnal Riset Akuntansi dan Bisnis Airlangga","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Riset Akuntansi dan Bisnis Airlangga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/jraba.v8i1.44940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to identify the most popular topics and words in conversations in cyberspace with the issue of E-Money. In addition, the research aims to find out how netizens feel about E-Money with the help of Machine Learning. This study uses a quantitative method with a sentiment analysis approach using the Machine Learning program, namely Orange Data Mining. The data used are tweets originating from Twitter that were crawled from April 5, 2023, to April 12, 2023. Researchers used the keywords E-Money," "Electronic Money," and "Electronic Money" to get a total of 800 tweets. The results showed that the words "Money," "Deposit," and "Tools" are the three words that appear most frequently in discussions of E-Money on Twitter, which is a registration procedure for using E-Money for the first time. In addition, E-Money is widely discussed in tweets in the form of Quizzes or giveaways, so in these tweets, E-money is used as a medium for transferring funds. Overall, the sentiment shown by netizens on Twitter is positive, with emotions dominated by feelings of joy and surprise towards E-Money. On the other hand, a tiny number still shows negatively, especially when experiencing technical problems when using E-Money, so concerns arise about the security of their money and personal data. Then the results of this study can be used by E-Money issuers as evaluation material to continue improving the security system so that E-Money users feel safe and satisfied and will continue to use E-Money for an extended period.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印尼网民怎么看待emony?:基于机器学习的情感分析
本研究旨在通过电子货币问题来确定网络空间对话中最受欢迎的话题和词语。此外,本研究旨在借助机器学习了解网民对电子货币的感受。本研究使用了一种定量方法和情绪分析方法,使用了机器学习程序,即Orange数据挖掘。使用的数据是从2023年4月5日到2023年3月12日从推特上抓取的推文。研究人员使用关键词E-Money、“Electronic Money”和“Electronic Money”总共获得了800条推文。结果显示,“Money”、“Deposit”,“和”工具“是推特上讨论电子货币最频繁的三个词,这是首次使用电子货币的注册程序。此外,电子货币在推特上以测验或赠品的形式被广泛讨论,因此在这些推特中,电子货币被用作转移资金的媒介。总体而言,网民在推特中表现出的情绪是积极的,有情绪被对电子货币的喜悦和惊喜所支配。另一方面,仍有一小部分人表现出负面影响,尤其是在使用电子货币时遇到技术问题时,因此人们对他们的资金和个人数据的安全性表示担忧。然后,这项研究的结果可以被电子货币发行商用作评估材料,以继续改进安全系统,使电子货币用户感到安全和满意,并将继续长期使用电子货币。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
48 weeks
期刊最新文献
FINANCIAL FRAUD DETECTION AND MACHINE LEARNING ALGORITHM (UNSUPERVISED LEARNING): SYSTEMATIC LITERATURE REVIEW AUDIT COMMITTEE EFFECTIVENESS AS FRAUD PREVENTION MECHANISMS KETIDAKPASTIAN LINGKUNGAN DAN MANAJEMEN LABA DENGAN KEMAMPUAN MANAJERIAL SEBAGAI VARIABEL MODERASI MACHINE LEARNING FOR E-COMMERCE FRAUD DETECTION THE MODERATING ROLE OF ESG DISCLOSURE ON FIRM STRATEGY AND STOCK PRICE CRASH RISK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1