Toshihito Nomura, Tanuza Nazmul, R. Yoshimoto, A. Higashiura, K. Oda, T. Sakaguchi
{"title":"Ethanol Susceptibility of SARS-CoV-2 and Other Enveloped Viruses.","authors":"Toshihito Nomura, Tanuza Nazmul, R. Yoshimoto, A. Higashiura, K. Oda, T. Sakaguchi","doi":"10.21203/RS.3.RS-379468/V1","DOIUrl":null,"url":null,"abstract":"Ethanol is an effective disinfectant against the novel coronavirus SARS-CoV-2. However, its effective concentration has not been shown, and we therefore analyzed the effects of different concentrations of ethanol on SARS-CoV-2. When SARS-CoV-2 was treated with varying ethanol concentrations and examined for changes in infectivity, the ethanol concentration at which 99% of the infectious titers were reduced was 24.1% (w/w) [29.3% (v/v)]. For reference, ethanol susceptibility was also examined with other envelope viruses, including influenza virus, vesicular stomatitis virus in the family Rhabdoviridae, and Newcastle disease virus in the family Paramyxoviridae, and the 99% inhibitory concentrations were found to be 28.8%(w/w) [34.8% (v/v)], 24.0% (w/w) [29.2% (v/v)], and 13.3% (w/w) [16.4% (v/v)], respectively. Some differences from SARS-CoV-2 were observed, but the differences were not significant. It was concluded that ethanol at a concentration of 30%(w/w) [36.2% (v/v)] almost completely inactivates SARS-CoV-2.","PeriodicalId":8777,"journal":{"name":"Biocontrol science","volume":"26 3 1","pages":"177-180"},"PeriodicalIF":0.9000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocontrol science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-379468/V1","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 16
Abstract
Ethanol is an effective disinfectant against the novel coronavirus SARS-CoV-2. However, its effective concentration has not been shown, and we therefore analyzed the effects of different concentrations of ethanol on SARS-CoV-2. When SARS-CoV-2 was treated with varying ethanol concentrations and examined for changes in infectivity, the ethanol concentration at which 99% of the infectious titers were reduced was 24.1% (w/w) [29.3% (v/v)]. For reference, ethanol susceptibility was also examined with other envelope viruses, including influenza virus, vesicular stomatitis virus in the family Rhabdoviridae, and Newcastle disease virus in the family Paramyxoviridae, and the 99% inhibitory concentrations were found to be 28.8%(w/w) [34.8% (v/v)], 24.0% (w/w) [29.2% (v/v)], and 13.3% (w/w) [16.4% (v/v)], respectively. Some differences from SARS-CoV-2 were observed, but the differences were not significant. It was concluded that ethanol at a concentration of 30%(w/w) [36.2% (v/v)] almost completely inactivates SARS-CoV-2.
期刊介绍:
The Biocontrol Science provides a medium for the publication of original articles, concise notes, and review articles on all aspects of science and technology of biocontrol.