{"title":"Expansions for posterior distributions","authors":"C. Withers, S. Nadarajah","doi":"10.1214/22-bjps561","DOIUrl":null,"url":null,"abstract":": Suppose that X n is a sample of size n with log likelihood nl ( θ ), where θ is an unknown parameter in R p having a prior distribution ξ ( θ ). We need not assume that the sample values are independent or even stationary. Let (cid:98) θ be the maximum likelihood estimate (MLE). We show that θ | X n is asymptotically normal with mean (cid:98) θ and covariance − n − 1 l (cid:5) , (cid:5) (cid:16)(cid:98) θ (cid:17) − 1 , where l (cid:5) , (cid:5) ( θ ) = ∂ 2 l ( θ ) /∂θ∂θ ′ . In contrast (cid:98) θ | θ is asymptotically normal with mean θ and covariance n − 1 [ I ( θ )] − 1 , where I ( θ ) = − E (cid:104) l (cid:5) , (cid:5) (cid:16)(cid:98) θ (cid:17) | θ (cid:105) is Fisher’s information. So, frequentist inference conditional on θ cannot be used to approximate Bayesian inference, except for exponential families. However, under mild conditions − l (cid:5) , (cid:5) (cid:16)(cid:98) θ (cid:17) | θ → I ( θ ) in probability. So, Bayesian inference (that is, conditional on X n ) can be used to approximate frequentist inference. For t ( θ ) any smooth function, we obtain posterior cumulant expansions, posterior Edgeworth-Cornish-Fisher (ECF) expansions and posterior tilted Edgeworth expansions for L t ( θ ) | X n , as well as confidence regions for t ( θ ) | X n of high accuracy. We also give expansions for the Bayes estimate (estimator) of t ( θ ) about t (cid:16)(cid:98) θ (cid:17) , and for the maximum a posteriori estimate about (cid:98) θ , as well as their relative efficiencies with respect to squared error loss.","PeriodicalId":51242,"journal":{"name":"Brazilian Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Probability and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-bjps561","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
: Suppose that X n is a sample of size n with log likelihood nl ( θ ), where θ is an unknown parameter in R p having a prior distribution ξ ( θ ). We need not assume that the sample values are independent or even stationary. Let (cid:98) θ be the maximum likelihood estimate (MLE). We show that θ | X n is asymptotically normal with mean (cid:98) θ and covariance − n − 1 l (cid:5) , (cid:5) (cid:16)(cid:98) θ (cid:17) − 1 , where l (cid:5) , (cid:5) ( θ ) = ∂ 2 l ( θ ) /∂θ∂θ ′ . In contrast (cid:98) θ | θ is asymptotically normal with mean θ and covariance n − 1 [ I ( θ )] − 1 , where I ( θ ) = − E (cid:104) l (cid:5) , (cid:5) (cid:16)(cid:98) θ (cid:17) | θ (cid:105) is Fisher’s information. So, frequentist inference conditional on θ cannot be used to approximate Bayesian inference, except for exponential families. However, under mild conditions − l (cid:5) , (cid:5) (cid:16)(cid:98) θ (cid:17) | θ → I ( θ ) in probability. So, Bayesian inference (that is, conditional on X n ) can be used to approximate frequentist inference. For t ( θ ) any smooth function, we obtain posterior cumulant expansions, posterior Edgeworth-Cornish-Fisher (ECF) expansions and posterior tilted Edgeworth expansions for L t ( θ ) | X n , as well as confidence regions for t ( θ ) | X n of high accuracy. We also give expansions for the Bayes estimate (estimator) of t ( θ ) about t (cid:16)(cid:98) θ (cid:17) , and for the maximum a posteriori estimate about (cid:98) θ , as well as their relative efficiencies with respect to squared error loss.
期刊介绍:
The Brazilian Journal of Probability and Statistics aims to publish high quality research papers in applied probability, applied statistics, computational statistics, mathematical statistics, probability theory and stochastic processes.
More specifically, the following types of contributions will be considered:
(i) Original articles dealing with methodological developments, comparison of competing techniques or their computational aspects.
(ii) Original articles developing theoretical results.
(iii) Articles that contain novel applications of existing methodologies to practical problems. For these papers the focus is in the importance and originality of the applied problem, as well as, applications of the best available methodologies to solve it.
(iv) Survey articles containing a thorough coverage of topics of broad interest to probability and statistics. The journal will occasionally publish book reviews, invited papers and essays on the teaching of statistics.