P-Order Secant Method for Rapidly Solving the Ray Inverse Problem of Underwater Acoustic Positioning

IF 2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Marine Geodesy Pub Date : 2021-10-19 DOI:10.1080/01490419.2021.1992547
Wenlong Yang, S. Xue, Yixu Liu
{"title":"P-Order Secant Method for Rapidly Solving the Ray Inverse Problem of Underwater Acoustic Positioning","authors":"Wenlong Yang, S. Xue, Yixu Liu","doi":"10.1080/01490419.2021.1992547","DOIUrl":null,"url":null,"abstract":"Abstract The computational efficiency of underwater acoustic positioning based on the ray tracing is mainly limited to a great amount of calculation of ray inverse problem. We propose two kinds of p-order secant methods to improve the efficiency of traditional method, and the proposed methods can be regarded as a generalization of the traditional secant method from two points to p points for rapidly solving the inverse problem. In the proposed methods, the calculation information in previous iterations is utilized to fit a polynomial model to speed up the algorithm convergence. In the first-kind method, the inverse problem is calculated by solving a polynomial equation approximating the function mapping from the emission angle to the radial distance of the ray. In the second-kind method, the inverse problem is however directly solved by approximating the function mapping from the radial distance to the emission angle. As the first-kind method needs to solve a p-order polynomial equation, the practicability of this method is limited to the complexity of solving the high-order equation, while the second-kind method can directly approximate the solution of the inverse problem, which is more practical and flexible. The proposed methods have been verified in deep-sea trial. It shows that, the proposed methods can precisely produce the solution of the acoustic ray inverse problem within one iteration, and the computational efficiency of proposed method is about 6 times faster than that of the traditional method.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2021.1992547","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The computational efficiency of underwater acoustic positioning based on the ray tracing is mainly limited to a great amount of calculation of ray inverse problem. We propose two kinds of p-order secant methods to improve the efficiency of traditional method, and the proposed methods can be regarded as a generalization of the traditional secant method from two points to p points for rapidly solving the inverse problem. In the proposed methods, the calculation information in previous iterations is utilized to fit a polynomial model to speed up the algorithm convergence. In the first-kind method, the inverse problem is calculated by solving a polynomial equation approximating the function mapping from the emission angle to the radial distance of the ray. In the second-kind method, the inverse problem is however directly solved by approximating the function mapping from the radial distance to the emission angle. As the first-kind method needs to solve a p-order polynomial equation, the practicability of this method is limited to the complexity of solving the high-order equation, while the second-kind method can directly approximate the solution of the inverse problem, which is more practical and flexible. The proposed methods have been verified in deep-sea trial. It shows that, the proposed methods can precisely produce the solution of the acoustic ray inverse problem within one iteration, and the computational efficiency of proposed method is about 6 times faster than that of the traditional method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速求解水声定位射线逆问题的p阶割线法
摘要基于射线追踪的水声定位的计算效率主要局限于射线反演问题的大量计算。我们提出了两种p阶割线方法来提高传统方法的效率,并且所提出的方法可以看作是传统割线方法从两点到p点的推广,用于快速求解逆问题。在所提出的方法中,利用先前迭代中的计算信息来拟合多项式模型,以加快算法的收敛速度。在第一种方法中,反问题是通过求解多项式方程来计算的,该方程近似于从发射角到射线径向距离的函数映射。然而,在第二种方法中,通过近似从径向距离到发射角的函数映射来直接解决反问题。由于第一种方法需要求解p阶多项式方程,因此该方法的实用性仅限于求解高阶方程的复杂性,而第二种方法可以直接逼近逆问题的解,更具实用性和灵活性。所提出的方法已在深海试验中得到验证。结果表明,所提出的方法可以在一次迭代中精确地求解声线逆问题,并且计算效率比传统方法快约6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine Geodesy
Marine Geodesy 地学-地球化学与地球物理
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment. The journal will consider articles on the following topics: topography and mapping; satellite altimetry; bathymetry; positioning; precise navigation; boundary demarcation and determination; tsunamis; plate/tectonics; geoid determination; hydrographic and oceanographic observations; acoustics and space instrumentation; ground truth; system calibration and validation; geographic information systems.
期刊最新文献
Antarctic ice surface properties inferred from Ka and Ku band altimeter waveforms Seafloor Topography Recovery Using the Observation Data of Tiangong-2 Interferometric Imaging Radar Altimeter Adversarial enhancement generation method for side-scan sonar images based on DDPM–YOLO Utilizing Elephant Herd-Inspired Spiking Neural Networks for Enhanced Ship Detection and Classification in Marine Scene Matching Special issue of Marine Geodesy on Remote Sensing of Islands, Reefs, and Coastal Zones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1