An Effect of Wind Veer on Wind Turbine Performance

Undarmaa Tumenbayar, K. Ko
{"title":"An Effect of Wind Veer on Wind Turbine Performance","authors":"Undarmaa Tumenbayar, K. Ko","doi":"10.14710/ijred.2023.47905","DOIUrl":null,"url":null,"abstract":"An investigation was performed to identify the wind veer impact on wind turbine power performance at a wind farm located on Jeju Island, South Korea. A 2 MW wind turbine was used as a test turbine. An 80 m-tall met mast was located 220 m away from the test wind turbine and a ground lidar was installed close to the met mast. The wind veer conditions were divided into four types: veering in upper and lower rotor (VV), veering in upper and backing in lower rotor (VB), backing in upper and lower rotor (BB) and backing in upper and veering in lower rotor (BV). The frequency of the four types was identified at the wind farm. The characteristics of wind veer was analysed in terms of diurnal variation and wind speed. In addition, the power curves of the four types were compared with that under no veer condition. Also, the power deviation coefficient (PDC) derived from the power outputs was calculated to identify the effect of the four types on the turbine power performance. As a result, the frequencies of the types, VV, VB, BB and BV were 62.7 %, 4.9 %, 9.2 % and 23.1 %, respectively. The PDCs for the types VV and BV were 3.0 % and 4.2 %, respectively, meaning a power gain while those for the types VB and BB were -2.9 % and -3.9 %, respectively, meaning a power loss.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Development-IJRED","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/ijred.2023.47905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

An investigation was performed to identify the wind veer impact on wind turbine power performance at a wind farm located on Jeju Island, South Korea. A 2 MW wind turbine was used as a test turbine. An 80 m-tall met mast was located 220 m away from the test wind turbine and a ground lidar was installed close to the met mast. The wind veer conditions were divided into four types: veering in upper and lower rotor (VV), veering in upper and backing in lower rotor (VB), backing in upper and lower rotor (BB) and backing in upper and veering in lower rotor (BV). The frequency of the four types was identified at the wind farm. The characteristics of wind veer was analysed in terms of diurnal variation and wind speed. In addition, the power curves of the four types were compared with that under no veer condition. Also, the power deviation coefficient (PDC) derived from the power outputs was calculated to identify the effect of the four types on the turbine power performance. As a result, the frequencies of the types, VV, VB, BB and BV were 62.7 %, 4.9 %, 9.2 % and 23.1 %, respectively. The PDCs for the types VV and BV were 3.0 % and 4.2 %, respectively, meaning a power gain while those for the types VB and BB were -2.9 % and -3.9 %, respectively, meaning a power loss.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风转向对风力机性能的影响
在韩国济州岛的一个风电场进行了一项调查,以确定风转向对风力涡轮机功率性能的影响。一台2兆瓦的风力涡轮机被用作测试涡轮机。一个80米高的met桅杆位于距离测试风力涡轮机220米的地方,地面激光雷达安装在met桅杆附近。将风转向工况分为上下旋翼转向(VV)、上下旋翼转向(VB)、上下旋翼倒转(BB)和上下旋翼倒转(BV)四种类型。在风电场中确定了四种类型的频率。从风向的日变化和风速的角度分析了风向的特征。并与无转向工况下的功率曲线进行了比较。同时,计算了功率输出的功率偏差系数(PDC),以识别四种类型对涡轮功率性能的影响。结果显示,VV、VB、BB和BV的出现频率分别为62.7%、4.9%、9.2%和23.1%。VV型和BV型的功率增益分别为3.0%和4.2%,而VB型和BB型的功率增益分别为- 2.9%和- 3.9%,意味着功率损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
16.00%
发文量
83
审稿时长
8 weeks
期刊最新文献
Performance characterization of a novel PV/T panel with nanofluids under the climatic conditions of Muscat, Oman Solid waste management by RDF production from landfilled waste to renewable fuel of Nonthaburi Computational prediction of green fuels from crude palm oil in fluid catalytic cracking riser Energy performance evaluation of a photovoltaic thermal phase change material (PVT-PCM) using a spiral flow configuration Exploring the link between green energy, CO2 emissions, exchange rate and economic growth: Perspective from emerging South Asian countries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1