Cilia at the Crossroads of Tumor Treating Fields and Chemotherapy.

IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-01-17 DOI:10.1159/000529193
Loic P Deleyrolle, Matthew R Sarkisian
{"title":"Cilia at the Crossroads of Tumor Treating Fields and Chemotherapy.","authors":"Loic P Deleyrolle, Matthew R Sarkisian","doi":"10.1159/000529193","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM), the most common and lethal primary brain tumor in adults, requires multi-treatment intervention which unfortunately barely shifts the needle in overall survival. The treatment options after diagnosis and surgical resection (if possible) include irradiation, temozolomide (TMZ) chemotherapy, and now tumor treating fields (TTFields). TTFields are electric fields delivered locoregionally to the head/tumor via a wearable medical device (Optune®). Overall, the concomitant treatment of TTFields and TMZ target tumor cells but spare normal cell types in the brain. Here, we examine whether primary cilia, microtubule-based \"antennas\" found on both normal brain cells and GBM cells, play specific roles in sensitizing tumor cells to treatment. We discuss evidence supporting GBM cilia being exploited by tumor cells to promote their growth and treatment resistance. We review how primary cilia on normal brain and GBM cells are affected by GBM treatments as monotherapy or concomitant modalities. We also focus on latest findings indicating a differential regulation of GBM ciliogenesis by TTFields and TMZ. Future studies await arrival of intracranial TTFields models to determine if GBM cilia carry a prognostic capacity.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 1","pages":"139-146"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000529193","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma (GBM), the most common and lethal primary brain tumor in adults, requires multi-treatment intervention which unfortunately barely shifts the needle in overall survival. The treatment options after diagnosis and surgical resection (if possible) include irradiation, temozolomide (TMZ) chemotherapy, and now tumor treating fields (TTFields). TTFields are electric fields delivered locoregionally to the head/tumor via a wearable medical device (Optune®). Overall, the concomitant treatment of TTFields and TMZ target tumor cells but spare normal cell types in the brain. Here, we examine whether primary cilia, microtubule-based "antennas" found on both normal brain cells and GBM cells, play specific roles in sensitizing tumor cells to treatment. We discuss evidence supporting GBM cilia being exploited by tumor cells to promote their growth and treatment resistance. We review how primary cilia on normal brain and GBM cells are affected by GBM treatments as monotherapy or concomitant modalities. We also focus on latest findings indicating a differential regulation of GBM ciliogenesis by TTFields and TMZ. Future studies await arrival of intracranial TTFields models to determine if GBM cilia carry a prognostic capacity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤毛在肿瘤治疗领域和化疗的十字路口
胶质母细胞瘤(GBM)是成人最常见、最致命的原发性脑肿瘤,需要多种治疗干预,不幸的是,这种干预几乎无法改变总生存率。诊断和手术切除(如果可能的话)后的治疗选择包括放疗、替莫唑胺(TMZ)化疗,以及现在的肿瘤治疗领域(TTFields)。TTFields是通过可穿戴医疗设备(Optune®)局部输送到头部/肿瘤的电场。总的来说,TTFields和TMZ的联合治疗靶向肿瘤细胞,但保留了大脑中的正常细胞类型。在这里,我们研究了在正常脑细胞和GBM细胞上发现的初级纤毛,即基于微管的“天线”,是否在使肿瘤细胞对治疗敏感方面发挥特定作用。我们讨论了支持肿瘤细胞利用GBM纤毛促进其生长和抗治疗的证据。我们回顾了正常大脑和GBM细胞上的原发性纤毛如何受到GBM单药治疗或联合治疗的影响。我们还关注了TTFields和TMZ对GBM纤毛形成的差异调节的最新发现。未来的研究等待颅内TTFields模型的到来,以确定GBM纤毛是否具有预后能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental Neuroscience
Developmental Neuroscience 医学-发育生物学
CiteScore
4.00
自引率
3.40%
发文量
49
审稿时长
>12 weeks
期刊介绍: ''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.
期刊最新文献
Ex vivo magnetic resonance imaging of the human fetal brain. Pubertal- and Stress-Dependent Changes in Cellular Activation and Expression of Excitatory Amino Acid Receptor Subunits in the Paraventricular Nucleus of the Hypothalamus in Male and Female Rats. Dexmedetomidine Alleviates the Long-Term Neurodevelopmental Toxicity Induced by Sevoflurane in the Developing Brain. The Relationship between Early Exposure to General Anesthesia and Neurobehavioral Deficits. Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1