Target-Site and Non–Target Site Mechanisms of Pronamide Resistance in Annual Bluegrass (Poa annua) Populations from Mississippi Golf Courses

IF 2.1 2区 农林科学 Q2 AGRONOMY Weed Science Pub Date : 2023-04-28 DOI:10.1017/wsc.2023.17
Martin Ignes, J. McCurdy, J. S. McElroy, E. Castro, J. Ferguson, Ashley N. Meredith, C. A. Rutland, B. Stewart, T. Tseng
{"title":"Target-Site and Non–Target Site Mechanisms of Pronamide Resistance in Annual Bluegrass (Poa annua) Populations from Mississippi Golf Courses","authors":"Martin Ignes, J. McCurdy, J. S. McElroy, E. Castro, J. Ferguson, Ashley N. Meredith, C. A. Rutland, B. Stewart, T. Tseng","doi":"10.1017/wsc.2023.17","DOIUrl":null,"url":null,"abstract":"Abstract The mitotic-inhibiting herbicide pronamide controls susceptible annual bluegrass (Poa annua L.) pre- and postemergence, but in some resistant populations, postemergence activity is compromised, hypothetically due to a target-site mutation, lack of root uptake, or an unknown resistance mechanism. Three suspected pronamide-resistant (LH-R, SC-R, and SL-R) and two pronamide-susceptible (BS-S and HH-S) populations were collected from Mississippi golf courses. Dose–response experiments were conducted to confirm and quantify pronamide resistance, as well as resistance to flazasulfuron and simazine. Target sites known to confer resistance to mitotic-inhibiting herbicides were sequenced, as were target sites for herbicides inhibiting acetolactate synthase (ALS) and photosystem II (PSII). Pronamide absorption and translocation were investigated following foliar and soil applications. Dose–response experiments confirmed pronamide resistance of LH-R, SC-R, and SL-R populations, as well as instances of multiple resistance to ALS- and PSII-inhibiting herbicides. Sequencing of the α-tubulin gene confirmed the presence of a mutation that substituted isoleucine for threonine at position 239 (Thr-239-Ile) in LH-R, SC-R, SL-R, and BS-S populations. Foliar application experiments failed to identify differences in pronamide absorption and translocation between the five populations, regardless of harvest time. All populations had limited basipetal translocation—only 3% to 13% of the absorbed pronamide—across harvest times. Soil application experiments revealed that pronamide translocation was similar between SC-R, SL-R, and both susceptible populations across harvest times. The LH-R population translocated less soil-applied pronamide than susceptible populations at 24, 72, and 168 h after treatment, suggesting that reduced acropetal translocation may contribute to pronamide resistance. This study reports three new pronamide-resistant populations, two of which are resistant to two modes of action (MOAs), and one of which is resistant to three MOAs. Results suggest that both target site– and translocation-based mechanisms may be associated with pronamide resistance. Further research is needed to confirm the link between pronamide resistance and the Thr-239-Ile mutation of the α-tubulin gene.","PeriodicalId":23688,"journal":{"name":"Weed Science","volume":"71 1","pages":"206 - 216"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wsc.2023.17","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The mitotic-inhibiting herbicide pronamide controls susceptible annual bluegrass (Poa annua L.) pre- and postemergence, but in some resistant populations, postemergence activity is compromised, hypothetically due to a target-site mutation, lack of root uptake, or an unknown resistance mechanism. Three suspected pronamide-resistant (LH-R, SC-R, and SL-R) and two pronamide-susceptible (BS-S and HH-S) populations were collected from Mississippi golf courses. Dose–response experiments were conducted to confirm and quantify pronamide resistance, as well as resistance to flazasulfuron and simazine. Target sites known to confer resistance to mitotic-inhibiting herbicides were sequenced, as were target sites for herbicides inhibiting acetolactate synthase (ALS) and photosystem II (PSII). Pronamide absorption and translocation were investigated following foliar and soil applications. Dose–response experiments confirmed pronamide resistance of LH-R, SC-R, and SL-R populations, as well as instances of multiple resistance to ALS- and PSII-inhibiting herbicides. Sequencing of the α-tubulin gene confirmed the presence of a mutation that substituted isoleucine for threonine at position 239 (Thr-239-Ile) in LH-R, SC-R, SL-R, and BS-S populations. Foliar application experiments failed to identify differences in pronamide absorption and translocation between the five populations, regardless of harvest time. All populations had limited basipetal translocation—only 3% to 13% of the absorbed pronamide—across harvest times. Soil application experiments revealed that pronamide translocation was similar between SC-R, SL-R, and both susceptible populations across harvest times. The LH-R population translocated less soil-applied pronamide than susceptible populations at 24, 72, and 168 h after treatment, suggesting that reduced acropetal translocation may contribute to pronamide resistance. This study reports three new pronamide-resistant populations, two of which are resistant to two modes of action (MOAs), and one of which is resistant to three MOAs. Results suggest that both target site– and translocation-based mechanisms may be associated with pronamide resistance. Further research is needed to confirm the link between pronamide resistance and the Thr-239-Ile mutation of the α-tubulin gene.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密西西比高尔夫球场一年生蓝草(Poa annua)种群对Pronamide抗性的靶点和非靶点机制
摘要抑制有丝分裂的除草剂pronamide控制易感的一年生蓝草(Poa annua L.)羽化前后,但在一些抗性群体中,羽化后的活性受到损害,假设是由于靶位点突变、缺乏根系吸收或未知的抗性机制。从密西西比州高尔夫球场收集了三个疑似对丙酰胺耐药的人群(LH-R、SC-R和SL-R)和两个对丙酰胺敏感的人群(BS-S和HH-S)。进行了剂量-反应实验,以确认和量化对丙酰胺的耐药性,以及对flazasulfuron和simazine的耐药性。对已知对抑制有丝分裂的除草剂具有抗性的靶位点进行了测序,对抑制乙酰乳酸合成酶(ALS)和光系统II(PSII)的除草剂的靶位点也进行了测序。在叶面和土壤施用后,研究了丙酰胺的吸收和转运。剂量反应实验证实了LH-R、SC-R和SL-R群体的原酰胺耐药性,以及对ALS和PSII抑制除草剂的多重耐药性。α-微管蛋白基因的测序证实了LH-R、SC-R、SL-R和BS-S群体中239位苏氨酸(Thr-239-Ile)被异亮氨酸取代的突变。无论收获时间如何,叶面施用实验都未能确定五个种群之间在丙酰胺吸收和转运方面的差异。所有种群在收获期都有有限的向基迁移,仅占吸收的叉酰胺的3%至13%。土壤施用实验表明,在不同收获期,SC-R、SL-R和两个易感群体之间的叉酰胺易位相似。在处理后24、72和168小时,LH-R群体比易感群体迁移更少的土壤施用的丙酰胺,这表明减少的肢端移位可能有助于对丙酰胺的抗性。本研究报告了三个新的抗甲酰胺种群,其中两个对两种作用模式(MOAs)具有耐药性,一个对三种MOAs具有耐药性。结果表明,基于靶位点和易位的机制可能与丙酰胺耐药性有关。需要进一步的研究来证实原酰胺抗性与α-微管蛋白基因的Thr-239-Ile突变之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Weed Science
Weed Science 农林科学-农艺学
CiteScore
4.60
自引率
12.00%
发文量
64
审稿时长
12-24 weeks
期刊介绍: Weed Science publishes original research and scholarship in the form of peer-reviewed articles focused on fundamental research directly related to all aspects of weed science in agricultural systems. Topics for Weed Science include: - the biology and ecology of weeds in agricultural, forestry, aquatic, turf, recreational, rights-of-way and other settings, genetics of weeds - herbicide resistance, chemistry, biochemistry, physiology and molecular action of herbicides and plant growth regulators used to manage undesirable vegetation - ecology of cropping and other agricultural systems as they relate to weed management - biological and ecological aspects of weed control tools including biological agents, and herbicide resistant crops - effect of weed management on soil, air and water.
期刊最新文献
Adaptations in wild radish (Raphanus raphanistrum) flowering time, Part 1: Individual-based modeling of a polygenic trait Smooth pigweed (Amaranthus hybridus) and unresolved Amaranthus spp. from Brazil resistant to glyphosate exhibit the EPSPS TAP-IVS substitution A Systematic Review of Chemical Weed Management in Peanut (Arachis hypogea) in the United States: Challenges and Opportunities Breeding allelopathy in cereal rye for weed suppression A hydrothermal model to predict Russian thistle (Salsola tragus) seedling emergence in the dryland of the Pacific Northwest (USA)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1