{"title":"On the undecidability and descriptional complexity of synchronized regular expressions","authors":"Jingnan Xie, Harry B. Hunt III","doi":"10.1007/s00236-023-00439-3","DOIUrl":null,"url":null,"abstract":"<div><p>In Freydenberger (Theory Comput Syst 53(2):159–193, 2013. https://doi.org/10.1007/s00224-012-9389-0), Freydenberger shows that the set of invalid computations of an extended Turing machine can be recognized by a synchronized regular expression [as defined in Della Penna et al. (Acta Informatica 39(1):31–70, 2003. https://doi.org/10.1007/s00236-002-0099-y)]. Therefore, the widely discussed predicate “<span>\\(=\\{0,1\\}^*\\)</span>” is not recursively enumerable for synchronized regular expressions (SRE). In this paper, we employ a stronger form of non-recursive enumerability called <i>productiveness</i> and show that the set of invalid computations of a deterministic Turing machine on a single input can be recognized by a synchronized regular expression. Hence, for a polynomial-time decidable subset of SRE, where each expression generates either <span>\\(\\{0, 1\\}^*\\)</span> or <span>\\(\\{0, 1\\}^* -\\{w\\}\\)</span> where <span>\\(w \\in \\{0, 1\\}^*\\)</span>, the predicate “<span>\\(=\\{0,1\\}^*\\)</span>” is productive. This result can be easily applied to other classes of language descriptors due to the simplicity of the construction in its proof. This result also implies that many computational problems, especially promise problems, for SRE are productive. These problems include language class comparison problems (e.g., does a given synchronized regular expression generate a context-free language?), and equivalence and containment problems of several types (e.g., does a given synchronized regular expression generate a language equal to a fixed unbounded regular set?). In addition, we study the descriptional complexity of SRE. A generalized method for studying trade-offs between SRE and many classes of language descriptors is established.</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"60 3","pages":"257 - 278"},"PeriodicalIF":0.4000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00236-023-00439-3.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-023-00439-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
In Freydenberger (Theory Comput Syst 53(2):159–193, 2013. https://doi.org/10.1007/s00224-012-9389-0), Freydenberger shows that the set of invalid computations of an extended Turing machine can be recognized by a synchronized regular expression [as defined in Della Penna et al. (Acta Informatica 39(1):31–70, 2003. https://doi.org/10.1007/s00236-002-0099-y)]. Therefore, the widely discussed predicate “\(=\{0,1\}^*\)” is not recursively enumerable for synchronized regular expressions (SRE). In this paper, we employ a stronger form of non-recursive enumerability called productiveness and show that the set of invalid computations of a deterministic Turing machine on a single input can be recognized by a synchronized regular expression. Hence, for a polynomial-time decidable subset of SRE, where each expression generates either \(\{0, 1\}^*\) or \(\{0, 1\}^* -\{w\}\) where \(w \in \{0, 1\}^*\), the predicate “\(=\{0,1\}^*\)” is productive. This result can be easily applied to other classes of language descriptors due to the simplicity of the construction in its proof. This result also implies that many computational problems, especially promise problems, for SRE are productive. These problems include language class comparison problems (e.g., does a given synchronized regular expression generate a context-free language?), and equivalence and containment problems of several types (e.g., does a given synchronized regular expression generate a language equal to a fixed unbounded regular set?). In addition, we study the descriptional complexity of SRE. A generalized method for studying trade-offs between SRE and many classes of language descriptors is established.
期刊介绍:
Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics.
Topics of interest include:
• semantics of programming languages
• models and modeling languages for concurrent, distributed, reactive and mobile systems
• models and modeling languages for timed, hybrid and probabilistic systems
• specification, program analysis and verification
• model checking and theorem proving
• modal, temporal, first- and higher-order logics, and their variants
• constraint logic, SAT/SMT-solving techniques
• theoretical aspects of databases, semi-structured data and finite model theory
• theoretical aspects of artificial intelligence, knowledge representation, description logic
• automata theory, formal languages, term and graph rewriting
• game-based models, synthesis
• type theory, typed calculi
• algebraic, coalgebraic and categorical methods
• formal aspects of performance, dependability and reliability analysis
• foundations of information and network security
• parallel, distributed and randomized algorithms
• design and analysis of algorithms
• foundations of network and communication protocols.