Pixel-level detection of multiple pavement distresses and surface design features with ShuttleNetV2

IF 5.7 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Structural Health Monitoring-An International Journal Pub Date : 2023-07-08 DOI:10.1177/14759217231183656
Han Zhang, Allen A. Zhang, Anzheng He, Zishuo Dong, Yang Liu
{"title":"Pixel-level detection of multiple pavement distresses and surface design features with ShuttleNetV2","authors":"Han Zhang, Allen A. Zhang, Anzheng He, Zishuo Dong, Yang Liu","doi":"10.1177/14759217231183656","DOIUrl":null,"url":null,"abstract":"Concurrently detecting multiple objects of interest will yield massive time savings in processing and enable a more streamlined and unified detection system. The ShuttleNet is designed to repeat the encoding–decoding round freely or even endlessly, achieving prodigious successes in terms of simultaneous detection of multiple pavement distresses and surface design features on asphalt pavements. This paper proposes an efficient and improved architecture of ShuttleNet called ShuttleNetV2 for enhanced global modeling and retrieving fine details capabilities. The proposed ShuttleNetV2 represents two major modifications on the original ShuttleNet. On the one hand, the self-attention mechanism is purposefully introduced to capture long-range dependency. On the other hand, ShuttleNetV2 adopts various sampling scales to combine the characteristics of different receptive fields. The experimental results indicate that the recommended architectural variation of the proposed ShuttleNetV2 model yields a mean F-measure of 94.21% and a mean intersection-over-union of 0.8914 on 1500 pairs of testing images. The proposed ShuttleNetV2 outperforms ShuttleNet in detecting nearly all types of pavement patterns. In particular, ShuttleNetV2 efficaciously tackles the tangible limitations of ShuttleNet in detecting giant distresses. Moreover, the ShuttleNetV2 can process an image in roughly 78 ms using modern graphic processing unit devices, which has a promising potential in supporting the real-time detection of multiple pavement distresses and surface design features on asphalt pavements.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14759217231183656","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Concurrently detecting multiple objects of interest will yield massive time savings in processing and enable a more streamlined and unified detection system. The ShuttleNet is designed to repeat the encoding–decoding round freely or even endlessly, achieving prodigious successes in terms of simultaneous detection of multiple pavement distresses and surface design features on asphalt pavements. This paper proposes an efficient and improved architecture of ShuttleNet called ShuttleNetV2 for enhanced global modeling and retrieving fine details capabilities. The proposed ShuttleNetV2 represents two major modifications on the original ShuttleNet. On the one hand, the self-attention mechanism is purposefully introduced to capture long-range dependency. On the other hand, ShuttleNetV2 adopts various sampling scales to combine the characteristics of different receptive fields. The experimental results indicate that the recommended architectural variation of the proposed ShuttleNetV2 model yields a mean F-measure of 94.21% and a mean intersection-over-union of 0.8914 on 1500 pairs of testing images. The proposed ShuttleNetV2 outperforms ShuttleNet in detecting nearly all types of pavement patterns. In particular, ShuttleNetV2 efficaciously tackles the tangible limitations of ShuttleNet in detecting giant distresses. Moreover, the ShuttleNetV2 can process an image in roughly 78 ms using modern graphic processing unit devices, which has a promising potential in supporting the real-time detection of multiple pavement distresses and surface design features on asphalt pavements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用ShuttleNetV2进行多路面破损和路面设计特征的像素级检测
同时检测多个感兴趣的对象将在处理过程中节省大量时间,并实现更精简和统一的检测系统。ShuttleNet旨在自由甚至无休止地重复编码-解码,在同时检测沥青路面上的多种路面病害和表面设计特征方面取得了巨大成功。本文提出了一种高效且改进的ShuttleNet架构,称为ShuttleNetV2,用于增强全局建模和检索精细细节的能力。提议的ShuttleNetV2代表了对原始ShuttleNet的两个主要修改。一方面,有目的地引入自注意机制来捕获长程依赖。另一方面,ShuttleNetV2采用不同的采样尺度,结合不同感受野的特点。实验结果表明,在1500对测试图像上,所提出的ShuttleNetV2模型的推荐架构变化产生了94.21%的平均F测度和0.8914的平均交集。所提出的ShuttleNetV2在检测几乎所有类型的路面图案方面都优于ShuttleNet。特别是,ShuttleNetV2有效地解决了ShuttleNet在检测巨大灾难方面的实际局限性。此外,ShuttleNetV2可以在大约78秒内处理图像 ms采用现代图形处理单元设备,在支持沥青路面多种路面病害和表面设计特征的实时检测方面具有很好的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.80
自引率
12.10%
发文量
181
审稿时长
4.8 months
期刊介绍: Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.
期刊最新文献
Deep learning-based obstacle-avoiding autonomous UAVs with fiducial marker-based localization for structural health monitoring. Deep learning-based concrete defects classification and detection using semantic segmentation. Combination of active sensing method and data-driven approach for rubber aging detection Distributed fiber optic strain sensing for crack detection with Brillouin shift spectrum back analysis An unsupervised transfer learning approach for rolling bearing fault diagnosis based on dual pseudo-label screening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1