Performance Evaluation of Hot Mixture Asphalt Using Concentrated Rubber Latex, Rubber Compound and Synthetic Polymer as Modifier

N. Suaryana, Tedi Santo Sofyan
{"title":"Performance Evaluation of Hot Mixture Asphalt Using Concentrated Rubber Latex, Rubber Compound and Synthetic Polymer as Modifier","authors":"N. Suaryana, Tedi Santo Sofyan","doi":"10.9744/CED.21.1.36-42","DOIUrl":null,"url":null,"abstract":"Research on the utilization of natural rubber for Hot Mixture Asphalt as modifier has been widely carried out, and more intensively since 2016 due to the declining global natural rubber price. Further research conducted is the utilization of pre-vulcanized concentrated rubber latex and rubber compound added with antioxidants and treated through vulcanization process. This study experimentally evaluates the performance of Asphalt Concrete Wearing Course (ACWC) using natural rubber and synthetic polymer as modifier, compared to ACWC without modifier (only petroleum asphalt).  The results show that the rubberized asphalt has higher index penetration value as well as higher elasticity compared to petroleum asphalt penetration grade 60, but lower than synthetic polymer modified asphalt. Similarly, the level of performance of rubberized asphalt mixtures, particularly resilient modulus, water resistance, deformation, and fatigue cracking, is between that of petroleum asphalt and synthetic polymer modified asphalt","PeriodicalId":30107,"journal":{"name":"Civil Engineering Dimension","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9744/CED.21.1.36-42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Research on the utilization of natural rubber for Hot Mixture Asphalt as modifier has been widely carried out, and more intensively since 2016 due to the declining global natural rubber price. Further research conducted is the utilization of pre-vulcanized concentrated rubber latex and rubber compound added with antioxidants and treated through vulcanization process. This study experimentally evaluates the performance of Asphalt Concrete Wearing Course (ACWC) using natural rubber and synthetic polymer as modifier, compared to ACWC without modifier (only petroleum asphalt).  The results show that the rubberized asphalt has higher index penetration value as well as higher elasticity compared to petroleum asphalt penetration grade 60, but lower than synthetic polymer modified asphalt. Similarly, the level of performance of rubberized asphalt mixtures, particularly resilient modulus, water resistance, deformation, and fatigue cracking, is between that of petroleum asphalt and synthetic polymer modified asphalt
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以浓胶乳、橡胶胶料和合成聚合物为改性剂的热混合沥青性能评价
由于全球天然橡胶价格的下降,2016年以来,热混合沥青用天然橡胶作为改性剂的研究得到了广泛开展,并且更加深入。进一步的研究是利用预硫化浓缩胶乳和掺加抗氧剂的胶料进行硫化处理。本研究对以天然橡胶和合成聚合物为改性剂的沥青混凝土耐磨层(ACWC)与不含改性剂的ACWC(仅含石油沥青)的性能进行了实验评价。结果表明:橡胶改性沥青的指标渗透值高于石油沥青的60级渗透值,弹性也高于石油沥青,但低于合成聚合物改性沥青。同样,橡胶沥青混合料的性能水平,特别是弹性模量、耐水性、变形和疲劳开裂,介于石油沥青和合成聚合物改性沥青之间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
24 weeks
期刊最新文献
Laboratory Study on Vallejo and Scovazzo’s Methods in Estimating the Rheology Parameters of Bentonite and Kaolinite Muds Influence of Prefabrication on Job Satisfaction in The Construction Industry Stress Analysis of Pin Connections in Steel Box Girder with the Unibridge System using Finite Element Model Monitoring and Analysis of Coastline Changes in the Coastal Area of Bali Island, Indonesia Free-Vibration and Buckling Analyses of Beams using Kriging-Based Timoshenko Beam Elements with the Discrete Shear Gap Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1