{"title":"Micronewton shear rheometer performing SAOS using 2 mg of sample","authors":"Weiwei Wu, Jintian Luo, Xikai Ouyang, Wangjing He, Kangle Bao, Hui Li, GengXin Liu (刘庚鑫)","doi":"10.1122/8.0000494","DOIUrl":null,"url":null,"abstract":"Rheological measurements typically require at least 20–50 mg of sample. We set up a miniaturized sliding-plates shear rheometer (mgRheo) that requires only 2 mg sample or even less. We designed a flexure-based force-sensing device that could measure force ranging from the micronewton to millinewton scale, e.g., 40 μN–400 mN for one particular spring constant. The setup was strain-controlled by a piezostage and could perform standard rheological tests such as small amplitude oscillatory shear, step strain, and stress relaxation. The accuracy and consistencies were evaluated on polydimethylsiloxane viscoelastic standard, entangled poly(hexyl methacrylate), and polystyrene. The obtained phase angles quantitatively agreed with those from commercial rheometers. The exact values of the modulus are prone to the overfilling of the sample. The storage G′ and loss G″ moduli from the mgRheo were systematically higher than those from commercial rheometers (i.e., within 5% with careful trimming or 30% with excessive overfilling). Between 102 and 106 Pa, G′ and G″ were in good agreement with commercial rheometers. Such a setup allowed for general rheometric characterizations, especially obtaining linear viscoelasticity on soft matters that are synthetically difficult to obtain in a large quantity.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000494","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2
Abstract
Rheological measurements typically require at least 20–50 mg of sample. We set up a miniaturized sliding-plates shear rheometer (mgRheo) that requires only 2 mg sample or even less. We designed a flexure-based force-sensing device that could measure force ranging from the micronewton to millinewton scale, e.g., 40 μN–400 mN for one particular spring constant. The setup was strain-controlled by a piezostage and could perform standard rheological tests such as small amplitude oscillatory shear, step strain, and stress relaxation. The accuracy and consistencies were evaluated on polydimethylsiloxane viscoelastic standard, entangled poly(hexyl methacrylate), and polystyrene. The obtained phase angles quantitatively agreed with those from commercial rheometers. The exact values of the modulus are prone to the overfilling of the sample. The storage G′ and loss G″ moduli from the mgRheo were systematically higher than those from commercial rheometers (i.e., within 5% with careful trimming or 30% with excessive overfilling). Between 102 and 106 Pa, G′ and G″ were in good agreement with commercial rheometers. Such a setup allowed for general rheometric characterizations, especially obtaining linear viscoelasticity on soft matters that are synthetically difficult to obtain in a large quantity.
期刊介绍:
The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.