Subha Maity, Diptavo Dutta, Jonathan Terhorst, Yuekai Sun, Moulinath Banerjee
{"title":"A linear adjustment-based approach to posterior drift in transfer learning.","authors":"Subha Maity, Diptavo Dutta, Jonathan Terhorst, Yuekai Sun, Moulinath Banerjee","doi":"10.1093/biomet/asad029","DOIUrl":null,"url":null,"abstract":"<p><p>We present new models and methods for the posterior drift problem where the regression function in the target domain is modelled as a linear adjustment, on an appropriate scale, of that in the source domain, and study the theoretical properties of our proposed estimators in the binary classification problem. The core idea of our model inherits the simplicity and the usefulness of generalized linear models and accelerated failure time models from the classical statistics literature. Our approach is shown to be flexible and applicable in a variety of statistical settings, and can be adopted for transfer learning problems in various domains including epidemiology, genetics and biomedicine. As concrete applications, we illustrate the power of our approach (i) through mortality prediction for British Asians by borrowing strength from similar data from the larger pool of British Caucasians, using the UK Biobank data, and (ii) in overcoming a spurious correlation present in the source domain of the Waterbirds dataset.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asad029","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We present new models and methods for the posterior drift problem where the regression function in the target domain is modelled as a linear adjustment, on an appropriate scale, of that in the source domain, and study the theoretical properties of our proposed estimators in the binary classification problem. The core idea of our model inherits the simplicity and the usefulness of generalized linear models and accelerated failure time models from the classical statistics literature. Our approach is shown to be flexible and applicable in a variety of statistical settings, and can be adopted for transfer learning problems in various domains including epidemiology, genetics and biomedicine. As concrete applications, we illustrate the power of our approach (i) through mortality prediction for British Asians by borrowing strength from similar data from the larger pool of British Caucasians, using the UK Biobank data, and (ii) in overcoming a spurious correlation present in the source domain of the Waterbirds dataset.
期刊介绍:
Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.