{"title":"Excitation Spectra and Edge Singularities in the One-Dimensional Anisotropic Heisenberg Model for Δ = cos(π/n), n = 3,4,5","authors":"P. Schlottmann","doi":"10.3390/quantum4040032","DOIUrl":null,"url":null,"abstract":"The T=0 excitation spectra of the antiferromagnetic (J>0) anisotropic Heisenberg chain of spins 1/2 are studied using the Bethe Ansatz equations for Δ=cos(π/n), n=3,4 and 5. The number of unknown functions is n−1 for Δ=cos(π/n) and can be solved numerically for a finite external field. The low-energy excitations form a Luttinger liquid parametrized by a conformal field theory with conformal charge of c=1. For higher energy excitations, the spectral functions display deviations from the Luttinger behavior arising from the curvature in the dispersion. Adding a corrective term of the form of a mobile impurity coupled to the Luttinger liquid modes corrects this difference. The “impurity” is an irrelevant operator, which if treated non-perturbatively, yields the threshold singularities in the one-spinwave particle and hole Green’s function correctly.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/quantum4040032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The T=0 excitation spectra of the antiferromagnetic (J>0) anisotropic Heisenberg chain of spins 1/2 are studied using the Bethe Ansatz equations for Δ=cos(π/n), n=3,4 and 5. The number of unknown functions is n−1 for Δ=cos(π/n) and can be solved numerically for a finite external field. The low-energy excitations form a Luttinger liquid parametrized by a conformal field theory with conformal charge of c=1. For higher energy excitations, the spectral functions display deviations from the Luttinger behavior arising from the curvature in the dispersion. Adding a corrective term of the form of a mobile impurity coupled to the Luttinger liquid modes corrects this difference. The “impurity” is an irrelevant operator, which if treated non-perturbatively, yields the threshold singularities in the one-spinwave particle and hole Green’s function correctly.