K. Goharrizi, S. Karami, T. Basaki, M. Dehnavi, M. Nejat, M. Momeni, G. Meru
{"title":"Transcriptomic and proteomic mechanisms underlying cold tolerance in plants","authors":"K. Goharrizi, S. Karami, T. Basaki, M. Dehnavi, M. Nejat, M. Momeni, G. Meru","doi":"10.32615/bp.2022.030","DOIUrl":null,"url":null,"abstract":"leucine activator catalase; C-repeat binding C-repeat binding factor/dehydration- calcineurin B-like glycoproteins; Acknowledgements : The present study Conflict of interest : The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Abstract Abiotic stress is one of the major challenges facing crop production globally. Abiotic stress resulting from low temperature is a major limitation to crop production, especially in the temperate regions of the world. Cold stress not only influence crop development and reduce yields, but also curtail the efficient distribution of agricultural products worldwide. An understanding of the molecular mechanisms underlying cold stress tolerance is important for the development of strategies to manage crop loss and improve yield. In this review, we explore the major molecular mechanisms involved in plant cold tolerance, including recent discoveries on interrelated gene networks and regulatory mechanisms for cold stress adaptation in crops. Further, we highlight the role of proteomics in the discovery of proteins involved in key signaling pathways, including late embryogenesis-abundant proteins, antifreeze proteins, cold-regulated proteins, heat shock proteins, and pathogenesis-related proteins. The role of these proteins, and their relative abundance in physiological-biochemical reactions, are discussed and key candidate proteins for plant genetic enhancement are suggested.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/bp.2022.030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
leucine activator catalase; C-repeat binding C-repeat binding factor/dehydration- calcineurin B-like glycoproteins; Acknowledgements : The present study Conflict of interest : The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Abstract Abiotic stress is one of the major challenges facing crop production globally. Abiotic stress resulting from low temperature is a major limitation to crop production, especially in the temperate regions of the world. Cold stress not only influence crop development and reduce yields, but also curtail the efficient distribution of agricultural products worldwide. An understanding of the molecular mechanisms underlying cold stress tolerance is important for the development of strategies to manage crop loss and improve yield. In this review, we explore the major molecular mechanisms involved in plant cold tolerance, including recent discoveries on interrelated gene networks and regulatory mechanisms for cold stress adaptation in crops. Further, we highlight the role of proteomics in the discovery of proteins involved in key signaling pathways, including late embryogenesis-abundant proteins, antifreeze proteins, cold-regulated proteins, heat shock proteins, and pathogenesis-related proteins. The role of these proteins, and their relative abundance in physiological-biochemical reactions, are discussed and key candidate proteins for plant genetic enhancement are suggested.
期刊介绍:
BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.