Agronomic characterization of Taiwan grass [Cenchrus purpureus (Schumach.) Morrone] and evaluation of its potential to produce bioethanol in the warm sub-humid climate of Mexico
Joel Ventura Ríos, J. A. Honorato Salazar, Flora Apolinar Hidalgo, Iliana Barrera Martínez, Jorge Aburto Anell, Humberto Vaquera Huerta
{"title":"Agronomic characterization of Taiwan grass [Cenchrus purpureus (Schumach.) Morrone] and evaluation of its potential to produce bioethanol in the warm sub-humid climate of Mexico","authors":"Joel Ventura Ríos, J. A. Honorato Salazar, Flora Apolinar Hidalgo, Iliana Barrera Martínez, Jorge Aburto Anell, Humberto Vaquera Huerta","doi":"10.17138/tgft(10)22-31","DOIUrl":null,"url":null,"abstract":"The objective of this study was to evaluate the biomass production, chemical composition, proximate analysis, calorific value and theoretical yield of bioethanol of Taiwan grass under 6 cutting frequencies. The highest production of biomass (33 t DM/ha), cellulose content (41.3%), calorific value (17.5 MJ/kg DM) and potential bioethanol yield (7,936 L/ha) were recorded at a cutting frequency of 180 days. The highest moisture content of the dehydrated samples and ash and crude protein concentrations were observed at a harvest frequency of 30 days with 9.2, 12.1 and 10.5%, respectively. The highest concentrations of extractives were obtained at harvest frequencies of 60 and 120 days (13.9 and 13.7%, respectively), while lignin concentrations were greatest at harvest frequencies of 150 and 180 days (21.1 and 20.9%, respectively). The highest concentration of fixed carbon was observed at a harvest frequency of 90 days (18.5%), while the lowest concentration of volatile matter occurred at a harvest frequency of 30 days. The data indicate that Taiwan grass has significant potential for use to produce bioethanol but assessment of the carbon footprint, life cycle analysis, energy yield (energy produced:energy consumed) of the entire production process is needed to ensure there are positive effects on climate change and greenhouse gas emissions before this process is adopted.","PeriodicalId":56049,"journal":{"name":"Tropical Grasslands-Forrajes Tropicales","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Grasslands-Forrajes Tropicales","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17138/tgft(10)22-31","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
The objective of this study was to evaluate the biomass production, chemical composition, proximate analysis, calorific value and theoretical yield of bioethanol of Taiwan grass under 6 cutting frequencies. The highest production of biomass (33 t DM/ha), cellulose content (41.3%), calorific value (17.5 MJ/kg DM) and potential bioethanol yield (7,936 L/ha) were recorded at a cutting frequency of 180 days. The highest moisture content of the dehydrated samples and ash and crude protein concentrations were observed at a harvest frequency of 30 days with 9.2, 12.1 and 10.5%, respectively. The highest concentrations of extractives were obtained at harvest frequencies of 60 and 120 days (13.9 and 13.7%, respectively), while lignin concentrations were greatest at harvest frequencies of 150 and 180 days (21.1 and 20.9%, respectively). The highest concentration of fixed carbon was observed at a harvest frequency of 90 days (18.5%), while the lowest concentration of volatile matter occurred at a harvest frequency of 30 days. The data indicate that Taiwan grass has significant potential for use to produce bioethanol but assessment of the carbon footprint, life cycle analysis, energy yield (energy produced:energy consumed) of the entire production process is needed to ensure there are positive effects on climate change and greenhouse gas emissions before this process is adopted.
期刊介绍:
The Journal publishes, in English or Spanish, Research Papers and Short Communications on research and development, as well as contributions from practitioners (Farmer Contributions) and Review Articles, related to pastures and forages in the tropics and subtropics. There is no regional focus; the information published should be of interest to a wide readership, encomprising researchers, academics, students, technicians, development workers and farmers.
In general, the focus of the Journal is more on sown (''improved'') pastures and forages than on rangeland-specific aspects of natural grasslands, but exceptions are possible (e.g. when a submission is relevant for a particularly broad readership in the pasture and forage science community).
The Journal will also consider the occasional publication of associated, but closely related, research in the form of an additional scientific communication platform [e.g. a re-make of the former Genetic Resources Communication series of the former Division of Tropical Crops and Pastures of the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia].
Areas of particular interest to the Journal are:
Forage Genetic Resources and Livestock Production[...]
Environmental Functions of Forages[...]
Socio-economic Aspects[...]
Topics within the aforementioned areas may include: Diversity evaluation; Agronomy; Establishment (including fertilization); Management and utilization; Animal production; Nutritive value; Biotic stresses (pests and diseases, weeds); Abiotic stresses (soil fertility, water, temperature); Genetics and breeding; Biogeography and germplasm collections; Seed production; Ecology; Physiology; Rhizobiology (including BNF, BNI, mycorrhizae); Forage conservation; Economics; Multilocational experimentation; Modelling.