Unbiased estimator for the ultimate claim prediction error in the chain-ladder model of Mack

IF 1.5 Q3 BUSINESS, FINANCE Annals of Actuarial Science Pub Date : 2022-08-01 DOI:10.1017/s1748499522000082
Filippo Siegenthaler
{"title":"Unbiased estimator for the ultimate claim prediction error in the chain-ladder model of Mack","authors":"Filippo Siegenthaler","doi":"10.1017/s1748499522000082","DOIUrl":null,"url":null,"abstract":"Abstract We propose a new estimator for the ultimate prediction uncertainty within the famous Mack’s distribution-free chain-ladder model, which can be proved to be unbiased (conditionally given the first triangle column) under some additional technical assumptions. A peculiar behaviour of the unbiased estimator is given by its possible negativity. This is a drawback which might be worth trading off for the unbiasedness property, since there is empirical evidence that the likelihood of a negative realisation is extremely low. This offers an alternative to the well-known Mack and BBMW formulas since the latters can be proved to be biased. However, we also show that this novel estimator, as well as the Mack and BBMW formulas, can (with non-negligible probability) materially fail to estimate the true uncertainty.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":"17 1","pages":"118 - 144"},"PeriodicalIF":1.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499522000082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We propose a new estimator for the ultimate prediction uncertainty within the famous Mack’s distribution-free chain-ladder model, which can be proved to be unbiased (conditionally given the first triangle column) under some additional technical assumptions. A peculiar behaviour of the unbiased estimator is given by its possible negativity. This is a drawback which might be worth trading off for the unbiasedness property, since there is empirical evidence that the likelihood of a negative realisation is extremely low. This offers an alternative to the well-known Mack and BBMW formulas since the latters can be proved to be biased. However, we also show that this novel estimator, as well as the Mack and BBMW formulas, can (with non-negligible probability) materially fail to estimate the true uncertainty.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mack链梯模型中最终索赔预测误差的无偏估计
摘要我们在著名的Mack分布自由链梯形模型中提出了一种新的最终预测不确定性估计量,在一些额外的技术假设下,该估计量可以被证明是无偏的(有条件地给定第一个三角列)。无偏估计量的一个特殊性质是由其可能的负性给出的。这是一个值得用无偏性进行权衡的缺点,因为有经验证据表明,负变现的可能性极低。这为著名的Mack和BBMW公式提供了一种替代方案,因为后者可以被证明是有偏见的。然而,我们也表明,这种新的估计量,以及Mack和BBMW公式,可能(以不可忽略的概率)严重无法估计真实的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
期刊最新文献
Generalized Poisson random variable: its distributional properties and actuarial applications Optimizing insurance risk assessment: a regression model based on a risk-loaded approach Bonus-Malus Scale premiums for Tweedie’s compound Poisson models Risk analysis of a multivariate aggregate loss model with dependence Valuation of guaranteed minimum accumulation benefits (GMABs) with physics-inspired neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1