M. H. R. Putranto, I. Meilano, R. Virtriana, M. Abdurrachman, R. F. Adiwijaya
{"title":"SPATIAL ANALYSIS OF VOLCANIC ASH DISTRIBUTION DUE TO VOLCANIC ERUPTION IN JAVA ISLAND","authors":"M. H. R. Putranto, I. Meilano, R. Virtriana, M. Abdurrachman, R. F. Adiwijaya","doi":"10.5194/isprs-archives-xlviii-m-3-2023-197-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Indonesia is located on the Ring of Fire with the most geologically active than any other countries, which makes it vulnerable due to the massive earthquakes and volcanic eruptions. Java Island has the most active volcano with high risks such as human risk and infrastructure from volcanic ash because of volcanic eruptions. The availability of the map of potential volcanic hazards is important to help mitigate the risk caused by volcanic eruptions. However, to the best of the author's knowledge, the distribution of volcanic ash has never been assessed in detail in the disaster-prone hazard map published by the Centre for Volcanology and Geological Hazard Mitigation (CVGHM), Indonesia. This research reported the potential distribution of volcanic ash due to volcanic eruptions in the future in Java island. Following the principles of Probabilistic Hazard Assessment and TephraProb software, the modeling of volcanic ash potential was performed using various parameters such as historical data, eruption source parameter, total grain-size distribution, tephra2 parameter, and the wind speed around the volcanoes as an input. The map shows the distribution of volcanic ash based on the volcanic ash accumulation (kg/m2) and the volcanic ash hazard map is classified into three classes. There are 19 models of volcanic ash distribution with various probabilities of exceedance based on 19 A-type volcanoes on Java Island. This volcano's distribution of volcanic ash tends to the southwest as the wind speed and direction.\n","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-m-3-2023-197-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Indonesia is located on the Ring of Fire with the most geologically active than any other countries, which makes it vulnerable due to the massive earthquakes and volcanic eruptions. Java Island has the most active volcano with high risks such as human risk and infrastructure from volcanic ash because of volcanic eruptions. The availability of the map of potential volcanic hazards is important to help mitigate the risk caused by volcanic eruptions. However, to the best of the author's knowledge, the distribution of volcanic ash has never been assessed in detail in the disaster-prone hazard map published by the Centre for Volcanology and Geological Hazard Mitigation (CVGHM), Indonesia. This research reported the potential distribution of volcanic ash due to volcanic eruptions in the future in Java island. Following the principles of Probabilistic Hazard Assessment and TephraProb software, the modeling of volcanic ash potential was performed using various parameters such as historical data, eruption source parameter, total grain-size distribution, tephra2 parameter, and the wind speed around the volcanoes as an input. The map shows the distribution of volcanic ash based on the volcanic ash accumulation (kg/m2) and the volcanic ash hazard map is classified into three classes. There are 19 models of volcanic ash distribution with various probabilities of exceedance based on 19 A-type volcanoes on Java Island. This volcano's distribution of volcanic ash tends to the southwest as the wind speed and direction.