Improving ​conversational ​search with ​query ​reformulation ​using ​selective ​contextual ​history

Haya Al-Thani , Tamer Elsayed , Bernard J. Jansen
{"title":"Improving ​conversational ​search with ​query ​reformulation ​using ​selective ​contextual ​history","authors":"Haya Al-Thani ,&nbsp;Tamer Elsayed ,&nbsp;Bernard J. Jansen","doi":"10.1016/j.dim.2022.100025","DOIUrl":null,"url":null,"abstract":"<div><p>Automated responses to questions for conversational agents, known as conversation passage retrieval, is challenging due to omissions and implied context in user queries. To help address this challenge, queries can be re-written using pre-trained sequence-to-sequence models based on contextual clues from the conversation's history to resolve ambiguities. In this research, we use the TREC conversational assistant (CAsT) 2020 dataset, selecting relevant single sentences from conversation history for query reformulation to improve system effectiveness and efficiency by avoiding topic drift. We propose a practical query selection method that measures clarity score to determine whether to use response sentences during reformulation. We further explore query reformulation as a binary term classification problem and the effects of rank fusion using multiple retrieval models. T5 and BERT retrievals are inventively combined to better represent user information need. Using multi-model fusion, our best system outperforms the best CAsT 2020 run, with an NDCG@3 of 0.537. The implication is that a more selective system that varies the use of responses depending on the query produces a more effective conversational reformulation system. Combining different retrieval results also proved effective in improving system recall.</p></div>","PeriodicalId":72769,"journal":{"name":"Data and information management","volume":"7 2","pages":"Article 100025"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and information management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2543925122001231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Automated responses to questions for conversational agents, known as conversation passage retrieval, is challenging due to omissions and implied context in user queries. To help address this challenge, queries can be re-written using pre-trained sequence-to-sequence models based on contextual clues from the conversation's history to resolve ambiguities. In this research, we use the TREC conversational assistant (CAsT) 2020 dataset, selecting relevant single sentences from conversation history for query reformulation to improve system effectiveness and efficiency by avoiding topic drift. We propose a practical query selection method that measures clarity score to determine whether to use response sentences during reformulation. We further explore query reformulation as a binary term classification problem and the effects of rank fusion using multiple retrieval models. T5 and BERT retrievals are inventively combined to better represent user information need. Using multi-model fusion, our best system outperforms the best CAsT 2020 run, with an NDCG@3 of 0.537. The implication is that a more selective system that varies the use of responses depending on the query produces a more effective conversational reformulation system. Combining different retrieval results also proved effective in improving system recall.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过使用选择性上下文历史的查询重新表述来改进会话搜索
会话代理对问题的自动响应(称为会话通道检索)由于用户查询中的遗漏和隐含上下文而具有挑战性。为了帮助解决这个问题,可以使用预先训练好的序列到序列模型来重写查询,该模型基于对话历史中的上下文线索来解决歧义。在本研究中,我们使用TREC会话助手(CAsT) 2020数据集,从会话历史中选择相关的单句进行查询重构,通过避免主题漂移来提高系统的有效性和效率。我们提出了一种实用的查询选择方法,通过测量清晰度得分来确定是否在改写过程中使用响应句。我们进一步探讨了将查询重新表述作为二值项分类问题,以及使用多个检索模型进行秩融合的效果。T5和BERT检索创造性地结合在一起,以更好地表示用户信息需求。使用多模型融合,我们的最佳系统优于CAsT 2020的最佳运行,NDCG@3为0.537。这意味着,根据查询改变响应使用的更具选择性的系统会产生更有效的会话重构系统。将不同的检索结果组合在一起也被证明是提高系统查全率的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data and information management
Data and information management Management Information Systems, Library and Information Sciences
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
55 days
期刊最新文献
Erratum regarding missing Declaration of Competing Interest statements in previously published articles (Volume 6, Issues 1–4) Improved detection of transient events in wide area sky survey using convolutional neural networks An evaluation method of academic output that considers productivity differences Adaptive K-means clustering based under-sampling methods to solve the class imbalance problem Does internet use affect public risk perception? — From the perspective of political participation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1