Bayesian forecasting in economics and finance: A modern review

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2023-07-18 DOI:10.1016/j.ijforecast.2023.05.002
Gael M. Martin , David T. Frazier , Worapree Maneesoonthorn , Rubén Loaiza-Maya , Florian Huber , Gary Koop , John Maheu , Didier Nibbering , Anastasios Panagiotelis
{"title":"Bayesian forecasting in economics and finance: A modern review","authors":"Gael M. Martin ,&nbsp;David T. Frazier ,&nbsp;Worapree Maneesoonthorn ,&nbsp;Rubén Loaiza-Maya ,&nbsp;Florian Huber ,&nbsp;Gary Koop ,&nbsp;John Maheu ,&nbsp;Didier Nibbering ,&nbsp;Anastasios Panagiotelis","doi":"10.1016/j.ijforecast.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>The Bayesian statistical paradigm provides a principled and coherent approach to probabilistic forecasting. Uncertainty about all unknowns that characterize any forecasting problem – model, parameters, latent states – is able to be quantified explicitly and factored into the forecast distribution via the process of integration or averaging. Allied with the elegance of the method, Bayesian forecasting is now underpinned by the burgeoning field of Bayesian computation, which enables Bayesian forecasts to be produced for virtually any problem, no matter how large or complex. The current state of play in Bayesian forecasting in economics and </span>finance is the subject of this review. The aim is to provide the reader with an overview of modern approaches to the field, set in some historical context, with sufficient computational detail given to assist the reader with implementation.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023000468","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Bayesian statistical paradigm provides a principled and coherent approach to probabilistic forecasting. Uncertainty about all unknowns that characterize any forecasting problem – model, parameters, latent states – is able to be quantified explicitly and factored into the forecast distribution via the process of integration or averaging. Allied with the elegance of the method, Bayesian forecasting is now underpinned by the burgeoning field of Bayesian computation, which enables Bayesian forecasts to be produced for virtually any problem, no matter how large or complex. The current state of play in Bayesian forecasting in economics and finance is the subject of this review. The aim is to provide the reader with an overview of modern approaches to the field, set in some historical context, with sufficient computational detail given to assist the reader with implementation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经济学和金融学中的贝叶斯预测:现代回顾
贝叶斯统计范式为概率预测提供了一种原则性的、连贯的方法。作为任何预测问题特征的所有未知因素--模型、参数、潜在状态--的不确定性都可以明确量化,并通过整合或平均过程将其纳入预测分布。除了方法的优雅之外,贝叶斯预测现在还得到了蓬勃发展的贝叶斯计算领域的支持,这使得贝叶斯预测几乎可以用于任何问题,无论其规模或复杂程度如何。贝叶斯预测在经济学和金融学中的应用现状是本综述的主题。其目的是在一定的历史背景下,向读者概述该领域的现代方法,并提供足够的计算细节,以帮助读者实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
On memory-augmented gated recurrent unit network Editorial Board A framework for timely and accessible long-term forecasting of shale gas production based on time series pattern matching Editorial Board Forecasting interest rates with shifting endpoints: The role of the functional demographic age distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1