{"title":"Analysis of Multivariate Survival Data under Semiparametric Copula Models","authors":"Wenqing He, Grace Y. Yi, Ao Yuan","doi":"10.1002/cjs.11776","DOIUrl":null,"url":null,"abstract":"<p>Modelling multivariate survival data is complicated by the complex association structure among the responses. To balance model flexibility and interpretability, we propose a semiparametric copula model to modulate multivariate survival data, with the marginal distributions of the response components described by semiparametric linear transformation models. To conduct inference about the model parameters, we develop a two-stage maximum likelihood method and a three-stage pseudo-likelihood estimation procedure. We investigate the impact of model misspecification on the estimation of covariate effects and identify a scenario in which consistent estimation of the marginal parameters is retained even when the copula model is misspecified. The proposed methods are justified both theoretically and empirically. An application to a real dataset is provided to demonstrate the utility of the proposed method.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 2","pages":"380-413"},"PeriodicalIF":0.8000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11776","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11776","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Modelling multivariate survival data is complicated by the complex association structure among the responses. To balance model flexibility and interpretability, we propose a semiparametric copula model to modulate multivariate survival data, with the marginal distributions of the response components described by semiparametric linear transformation models. To conduct inference about the model parameters, we develop a two-stage maximum likelihood method and a three-stage pseudo-likelihood estimation procedure. We investigate the impact of model misspecification on the estimation of covariate effects and identify a scenario in which consistent estimation of the marginal parameters is retained even when the copula model is misspecified. The proposed methods are justified both theoretically and empirically. An application to a real dataset is provided to demonstrate the utility of the proposed method.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.