Cartografía del abandono de cultivos de cítricos mediante el uso de datos altimétricos: LiDAR y fotogrametría SfM

IF 0.4 Q4 REMOTE SENSING Revista de Teledeteccion Pub Date : 2022-01-31 DOI:10.4995/raet.2022.16698
Sergio Morell-Monzó, María-Teresa Sebastiá-Frasquet, J. Estornell
{"title":"Cartografía del abandono de cultivos de cítricos mediante el uso de datos altimétricos: LiDAR y fotogrametría SfM","authors":"Sergio Morell-Monzó, María-Teresa Sebastiá-Frasquet, J. Estornell","doi":"10.4995/raet.2022.16698","DOIUrl":null,"url":null,"abstract":"The Comunitat Valenciana region (Spain) is the largest citrus producer in Europe. However, it has suffered an accelerated land abandonment in recent decades. Agricultural land abandonment is a global phenomenon with environmental and socio-economic implications. The small size of the agricultural parcels, the highly fragmented landscape and the low spectral separability between productive and abandoned parcels make it difficult to detect abandoned crops using moderate resolution images. In this work, an approach is applied to monitor citrus crops using altimetric data. The study uses two sources of altimetry data: LiDAR from the National Plan for Aerial Orthophotography (PNOA) and altimetric data obtained through an unmanned aerial system applying photogrammetric processes (Structure from Motion). The results showed an overall accuracy of 67,9% for the LiDAR data and 83,6% for the photogrammetric data. The high density of points in the photogrammetric data allowed to extract texture features from the Gray Level Co-Occurrence Matrix derived from the Canopy Height Model. The results indicate the potential of altimetry information for monitoring abandoned citrus fields, especially high-density point clouds. Future research should explore the fusion of spectral, textural and altimetric data for the study of abandoned citrus crops.","PeriodicalId":43626,"journal":{"name":"Revista de Teledeteccion","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Teledeteccion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/raet.2022.16698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

The Comunitat Valenciana region (Spain) is the largest citrus producer in Europe. However, it has suffered an accelerated land abandonment in recent decades. Agricultural land abandonment is a global phenomenon with environmental and socio-economic implications. The small size of the agricultural parcels, the highly fragmented landscape and the low spectral separability between productive and abandoned parcels make it difficult to detect abandoned crops using moderate resolution images. In this work, an approach is applied to monitor citrus crops using altimetric data. The study uses two sources of altimetry data: LiDAR from the National Plan for Aerial Orthophotography (PNOA) and altimetric data obtained through an unmanned aerial system applying photogrammetric processes (Structure from Motion). The results showed an overall accuracy of 67,9% for the LiDAR data and 83,6% for the photogrammetric data. The high density of points in the photogrammetric data allowed to extract texture features from the Gray Level Co-Occurrence Matrix derived from the Canopy Height Model. The results indicate the potential of altimetry information for monitoring abandoned citrus fields, especially high-density point clouds. Future research should explore the fusion of spectral, textural and altimetric data for the study of abandoned citrus crops.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高程数据绘制柑橘作物废弃图:激光雷达和SfM摄影测量
瓦伦西亚社区(西班牙)是欧洲最大的柑橘产地。然而,近几十年来,它遭受了加速的土地遗弃。农用地弃置是一种全球性现象,具有环境和社会经济影响。农业地块面积小,景观高度破碎化,生产地块和废弃地块之间的光谱可分性低,使得使用中等分辨率的图像难以检测废弃作物。在这项工作中,应用一种方法来监测柑橘作物利用高程数据。该研究使用了两个测高数据来源:来自国家航空正射影计划(PNOA)的激光雷达和通过应用摄影测量过程(运动结构)的无人机系统获得的测高数据。结果显示,激光雷达数据的总体精度为67.9%,摄影测量数据的总体精度为83.6%。摄影测量数据中的高密度点可以从冠层高度模型导出的灰度共生矩阵中提取纹理特征。研究结果表明,高程信息对柑桔废弃地特别是高密度点云的监测具有潜在的应用价值。未来的研究应探索光谱、纹理和高程数据的融合,以研究废弃柑橘作物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista de Teledeteccion
Revista de Teledeteccion REMOTE SENSING-
CiteScore
1.80
自引率
14.30%
发文量
11
审稿时长
10 weeks
期刊最新文献
Clasificación de uso y cobertura del suelo a través de algoritmos de aprendizaje automático: revisión bibliográfica Mapeo semiautomático de áreas quemadas en Chimborazo-Ecuador utilizando medias compuestas de dNBR con umbrales ajustados Análisis espacio-temporal de florecimientos algales nocivos en un lago-cráter tropical usando datos MODIS (2003-2020) Estimación de biomasa y carbono con herramientas de teledetección en bosques secos tropicales del Tolima, Colombia Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1