Improving the Quality of Bio-Oil Produced from Rice Husk Pyrolysis by Extraction of its Phenolic Compounds

D. S. Fardhyanti, B. Triwibowo, A. Chafidz, Novia Noor Cahyani, S. Andriyani
{"title":"Improving the Quality of Bio-Oil Produced from Rice Husk Pyrolysis by Extraction of its Phenolic Compounds","authors":"D. S. Fardhyanti, B. Triwibowo, A. Chafidz, Novia Noor Cahyani, S. Andriyani","doi":"10.15294/jbat.v8i2.22530","DOIUrl":null,"url":null,"abstract":"Rice husk is an agricultural waste which contains 50% cellulose, 25%-30% lignin and 15%-20% silica. It can be used as raw material of bio-oil. Bio-oil is liquid which produced by pyrolysis process. Bio-oil can be produced from the rice husk at 773 and 873 K. The main component of Bio-oil from rice husk pyrolysis at 773 and 873 K is phenolic compounds about 47.98% and 62.65%, respectively. It causes corrosive, low heating value, high acidity, high viscosity and unstable that causing an engine damage. The presence of phenolic compound decreases the quality of bio-oil. Therefore, it needs a process such as liquid-liquid extraction to reduce the phenolic compound using 80% methanol and 80% chloroform as a solvent. The extract and raffinate phase were analyzed using UV-Vis spectrophotometer. The aim of this research determine the effect of temperature pyrolysis for the characterization of bio-oil, the stirring speed and the temperature of the extraction for the distribution coefficient and the yield of phenolic compound. The results showed that the characterization of bio-oil produced from rice husk pyrolysis at 773 and 873 K are densities 1,040 and 1,042 Kg/m3; viscosities 9.3488 and 9.5007 cSt; acid numbers 46.75 and 52.45 mg KOH/g; pH 2.5 and 3; flash points 426 and 423 K and heating values 3.229 and 3.339 MJ/kg, respectively. The highest distribution coefficient and yield were obtained at 323 K and a stirring speed of 250 rpm. The distribution coefficient of bio-oil produced by pyrolysis at 773 and 873 K is 1.504, and 1.528, respectively. The yields of bio-oil produced by pyrolysis at 773 and 873 K are 58.885%, and 48.429%, respectively.  ","PeriodicalId":17764,"journal":{"name":"Jurnal Bahan Alam Terbarukan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Bahan Alam Terbarukan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/jbat.v8i2.22530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Rice husk is an agricultural waste which contains 50% cellulose, 25%-30% lignin and 15%-20% silica. It can be used as raw material of bio-oil. Bio-oil is liquid which produced by pyrolysis process. Bio-oil can be produced from the rice husk at 773 and 873 K. The main component of Bio-oil from rice husk pyrolysis at 773 and 873 K is phenolic compounds about 47.98% and 62.65%, respectively. It causes corrosive, low heating value, high acidity, high viscosity and unstable that causing an engine damage. The presence of phenolic compound decreases the quality of bio-oil. Therefore, it needs a process such as liquid-liquid extraction to reduce the phenolic compound using 80% methanol and 80% chloroform as a solvent. The extract and raffinate phase were analyzed using UV-Vis spectrophotometer. The aim of this research determine the effect of temperature pyrolysis for the characterization of bio-oil, the stirring speed and the temperature of the extraction for the distribution coefficient and the yield of phenolic compound. The results showed that the characterization of bio-oil produced from rice husk pyrolysis at 773 and 873 K are densities 1,040 and 1,042 Kg/m3; viscosities 9.3488 and 9.5007 cSt; acid numbers 46.75 and 52.45 mg KOH/g; pH 2.5 and 3; flash points 426 and 423 K and heating values 3.229 and 3.339 MJ/kg, respectively. The highest distribution coefficient and yield were obtained at 323 K and a stirring speed of 250 rpm. The distribution coefficient of bio-oil produced by pyrolysis at 773 and 873 K is 1.504, and 1.528, respectively. The yields of bio-oil produced by pyrolysis at 773 and 873 K are 58.885%, and 48.429%, respectively.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过提取稻壳热解生物油中的酚类化合物来提高其质量
稻壳是一种农业废弃物,含有50%的纤维素、25%-30%的木质素和15%-20%的二氧化硅。它可以作为生物油的原料。生物油是通过热解过程产生的液体。稻壳在773和873K温度下可产生生物油。稻壳在773K和873k温度下热解产生的生物油主要成分为酚类化合物,酚类化合物含量分别约为47.98%和62.65%。它会导致腐蚀性、低热值、高酸度、高粘度和不稳定,从而导致发动机损坏。酚类化合物的存在降低了生物油的质量。因此,需要使用80%甲醇和80%氯仿作为溶剂的液-液萃取法来还原酚类化合物。用紫外-可见分光光度计分析萃取物和萃余液相。本研究的目的是确定温度热解对生物油表征的影响,搅拌速度和提取温度对酚类化合物的分布系数和产率的影响。结果表明,稻壳在773和873K下热解得到的生物油的密度分别为1040和1042kg/m3;粘度9.3488和9.5007cSt;酸值分别为46.75和52.45mg KOH/g;pH为2.5和3;闪点426和423K以及热值分别为3.229和3.339MJ/kg。在323K和250rpm的搅拌速度下获得了最高的分配系数和产率。在773和873K下热解产生的生物油的分布系数分别为1.504和1.528。在773和873K下热解产生的生物油的产率分别为58.885%和48.429%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Optimization of Rhizopus Sp. Growth Media for Biofoam Manufacture: Effect of Temperature and Substrate Composition Optimization of Operating Condition for the Production of Edible Film from Cuttlefish’s Bone Gelatin as Instant Noodle Seasoning Packaging Preparation of Composite Reinforced Agent Based on Sweet Sorghum Stalk Fiber through Alkali Pressure Steam Treated Method The Properties of Particleboard Composites Made from Pleurotus ostreatus Baglog Waste Using Citric Acid and Sucrose Adhesive Optimization of Glycerolysis of Free Fatty Acids from Cocoa Bean with MgO Catalyst Using Response Surface Methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1