Influence of Coexistence of Pitting and Cracking Faults on a Two-Stage Spur Gear System

IF 1.9 Q3 ENGINEERING, MECHANICAL Vibration Pub Date : 2023-02-08 DOI:10.3390/vibration6010013
Kemajou Herbert Yakeu Happi, Bernard Xavier Tchomeni Kouejou, A. Alugongo
{"title":"Influence of Coexistence of Pitting and Cracking Faults on a Two-Stage Spur Gear System","authors":"Kemajou Herbert Yakeu Happi, Bernard Xavier Tchomeni Kouejou, A. Alugongo","doi":"10.3390/vibration6010013","DOIUrl":null,"url":null,"abstract":"This work considers forced vibrations in a rotating structure consisting of a two-stage spur gear system with coexisting defects, specifically pitting and cracking. Numerical simulations and experimental analysis in various scenarios of the system in operation were conducted using the RPM–Frequency mapping technique. To identify fault characteristics, the analysis performed assumed the gear system had been misadjusted by a combination of pitting and cracking on the gear teeth. The correlation of the system-forced responses under regular and chaotic vibrations revealed that the system is far more sensitive to the crack than to the pitting when there are fluctuating harmonic peaks present at high vibration levels.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration6010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work considers forced vibrations in a rotating structure consisting of a two-stage spur gear system with coexisting defects, specifically pitting and cracking. Numerical simulations and experimental analysis in various scenarios of the system in operation were conducted using the RPM–Frequency mapping technique. To identify fault characteristics, the analysis performed assumed the gear system had been misadjusted by a combination of pitting and cracking on the gear teeth. The correlation of the system-forced responses under regular and chaotic vibrations revealed that the system is far more sensitive to the crack than to the pitting when there are fluctuating harmonic peaks present at high vibration levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
点蚀和裂纹故障共存对二级直齿轮系统的影响
这项工作考虑了由两级直齿轮系统组成的旋转结构中的强迫振动,该结构具有共存的缺陷,特别是点蚀和裂纹。使用RPM–频率映射技术对系统运行中的各种场景进行了数值模拟和实验分析。为了识别故障特征,进行的分析假设齿轮系统因轮齿点蚀和裂纹而调整不当。系统在规则和混沌振动下的强迫响应的相关性表明,当在高振动水平下存在波动谐波峰值时,系统对裂纹的敏感性远高于对点蚀的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A Study of Seating Suspension System Vibration Isolation Using a Hybrid Method of an Artificial Neural Network and Response Surface Modelling Evaluating Contact-Less Sensing and Fault Diagnosis Characteristics in Vibrating Thin Cantilever Beams with a MetGlas® 2826MB Ribbon A Testbench for Measuring the Dynamic Force-Displacement Characteristics of Shockmounts Study on Fluid–Structure Interaction of a Camber Morphing Wing Study on Lateral Vibration of Tail Coach for High-Speed Train under Unsteady Aerodynamic Loads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1