Proposed applications of machine learning to intraoperative neuromonitoring during spine surgeries

John P. Wilson Jr , Deepak Kumbhare , Sandeep Kandregula, Alexander Oderhowho, Bharat Guthikonda, Stanley Hoang
{"title":"Proposed applications of machine learning to intraoperative neuromonitoring during spine surgeries","authors":"John P. Wilson Jr ,&nbsp;Deepak Kumbhare ,&nbsp;Sandeep Kandregula,&nbsp;Alexander Oderhowho,&nbsp;Bharat Guthikonda,&nbsp;Stanley Hoang","doi":"10.1016/j.neuri.2023.100143","DOIUrl":null,"url":null,"abstract":"<div><p>Intraoperative neurophysiological monitoring (IONM) provides data on the state of neurological functionality. However, the current state of technology impedes the reliable and timely extraction and communication of relevant information. Advanced signal processing and machine learning (ML) technologies can develop a robust surveillance system that can reliably monitor the current state of a patient's nervous system and promptly alert the surgeons of any imminent risk. Various ML and signal processing tools can be utilized to develop a real-time, objective, multi-modal IONM based-alert system for spine surgery. Next generation systems should be able to obtain inputs from anesthesiologists on vital sign disturbances and pharmacological changes, as well as being capable of adapting patient baseline and model parameters for patient variability in age, gender, and health. It is anticipated that the application of automated decision guiding of checklist strategies in response to warning criteria can reduce human work-burden, improve accuracy, and minimize errors.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 4","pages":"Article 100143"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528623000286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Intraoperative neurophysiological monitoring (IONM) provides data on the state of neurological functionality. However, the current state of technology impedes the reliable and timely extraction and communication of relevant information. Advanced signal processing and machine learning (ML) technologies can develop a robust surveillance system that can reliably monitor the current state of a patient's nervous system and promptly alert the surgeons of any imminent risk. Various ML and signal processing tools can be utilized to develop a real-time, objective, multi-modal IONM based-alert system for spine surgery. Next generation systems should be able to obtain inputs from anesthesiologists on vital sign disturbances and pharmacological changes, as well as being capable of adapting patient baseline and model parameters for patient variability in age, gender, and health. It is anticipated that the application of automated decision guiding of checklist strategies in response to warning criteria can reduce human work-burden, improve accuracy, and minimize errors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习在脊柱外科手术中神经监测中的应用
术中神经生理监测(IONM)提供神经功能状态的数据。然而,目前的技术状况阻碍了相关信息的可靠和及时的提取和交流。先进的信号处理和机器学习(ML)技术可以开发一个强大的监测系统,可以可靠地监测患者神经系统的当前状态,并及时提醒外科医生任何迫在眉睫的风险。各种机器学习和信号处理工具可以用来开发一个实时、客观、多模态的基于IONM的脊柱外科警报系统。下一代系统应该能够从麻醉师那里获得生命体征紊乱和药理学变化的输入,并能够根据患者年龄、性别和健康状况的变化调整患者基线和模型参数。应用清单策略的自动化决策指导来响应预警标准,可以减少人工工作量,提高准确性,并最大限度地减少错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
期刊最新文献
Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in neurodegenerative diseases Topic modeling of neuropsychiatric diseases related to gut microbiota and gut brain axis using artificial intelligence based BERTopic model on PubMed abstracts Brain network analysis in Parkinson's disease patients based on graph theory Exploring age-related functional brain changes during audio-visual integration tasks in early to mid-adulthood Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1