John P. Wilson Jr , Deepak Kumbhare , Sandeep Kandregula, Alexander Oderhowho, Bharat Guthikonda, Stanley Hoang
{"title":"Proposed applications of machine learning to intraoperative neuromonitoring during spine surgeries","authors":"John P. Wilson Jr , Deepak Kumbhare , Sandeep Kandregula, Alexander Oderhowho, Bharat Guthikonda, Stanley Hoang","doi":"10.1016/j.neuri.2023.100143","DOIUrl":null,"url":null,"abstract":"<div><p>Intraoperative neurophysiological monitoring (IONM) provides data on the state of neurological functionality. However, the current state of technology impedes the reliable and timely extraction and communication of relevant information. Advanced signal processing and machine learning (ML) technologies can develop a robust surveillance system that can reliably monitor the current state of a patient's nervous system and promptly alert the surgeons of any imminent risk. Various ML and signal processing tools can be utilized to develop a real-time, objective, multi-modal IONM based-alert system for spine surgery. Next generation systems should be able to obtain inputs from anesthesiologists on vital sign disturbances and pharmacological changes, as well as being capable of adapting patient baseline and model parameters for patient variability in age, gender, and health. It is anticipated that the application of automated decision guiding of checklist strategies in response to warning criteria can reduce human work-burden, improve accuracy, and minimize errors.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 4","pages":"Article 100143"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528623000286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Intraoperative neurophysiological monitoring (IONM) provides data on the state of neurological functionality. However, the current state of technology impedes the reliable and timely extraction and communication of relevant information. Advanced signal processing and machine learning (ML) technologies can develop a robust surveillance system that can reliably monitor the current state of a patient's nervous system and promptly alert the surgeons of any imminent risk. Various ML and signal processing tools can be utilized to develop a real-time, objective, multi-modal IONM based-alert system for spine surgery. Next generation systems should be able to obtain inputs from anesthesiologists on vital sign disturbances and pharmacological changes, as well as being capable of adapting patient baseline and model parameters for patient variability in age, gender, and health. It is anticipated that the application of automated decision guiding of checklist strategies in response to warning criteria can reduce human work-burden, improve accuracy, and minimize errors.
Neuroscience informaticsSurgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology