{"title":"Rotor position angle control of permanent magnet synchronous motor based on sliding mode extended state observer","authors":"Chao Wang, Bingyou Liu, Xuan Fan, Pan Yang","doi":"10.1080/21642583.2022.2110540","DOIUrl":null,"url":null,"abstract":"ABSTRACT To achieve fast, accurate control of the position angle of the rotor of permanent magnet synchronous motor (PMSM), traditional auto disturbance rejection control often has many adjustable parameters and complex tuning problems. Sliding mode control technology is introduced into the extended state observer (ESO) part of the auto disturbance rejection controller, and a new sliding mode approach law is designed based on several typical sliding mode approaches, which simplifies parameter tuning while retaining the original anti-interference performance of auto disturbance. In addition, the nonlinear state error feedback control law in active disturbance rejection control is enhanced to improve the component order PID control law, which can improve the response speed and robustness of the system, and prove the stability of the controller. Finally, the simulation of the PMSM rotor position control system based on the sliding mode ESO is carried out, and the results verify the validity of the method.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":"10 1","pages":"757 - 766"},"PeriodicalIF":3.2000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2022.2110540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT To achieve fast, accurate control of the position angle of the rotor of permanent magnet synchronous motor (PMSM), traditional auto disturbance rejection control often has many adjustable parameters and complex tuning problems. Sliding mode control technology is introduced into the extended state observer (ESO) part of the auto disturbance rejection controller, and a new sliding mode approach law is designed based on several typical sliding mode approaches, which simplifies parameter tuning while retaining the original anti-interference performance of auto disturbance. In addition, the nonlinear state error feedback control law in active disturbance rejection control is enhanced to improve the component order PID control law, which can improve the response speed and robustness of the system, and prove the stability of the controller. Finally, the simulation of the PMSM rotor position control system based on the sliding mode ESO is carried out, and the results verify the validity of the method.
期刊介绍:
Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory