Multiple-input multiple-output radar, ground-based MIMO SAR for ground deformation monitoring

IF 3.7 4区 地球科学 Q2 REMOTE SENSING European Journal of Remote Sensing Pub Date : 2022-11-17 DOI:10.1080/22797254.2022.2141660
F. Mugnai, D. Tarchi
{"title":"Multiple-input multiple-output radar, ground-based MIMO SAR for ground deformation monitoring","authors":"F. Mugnai, D. Tarchi","doi":"10.1080/22797254.2022.2141660","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study focuses on investigating the capabilities of a Multiple-input multiple-output RADAR. A Radar interferometer, based on an electronically scanned array in MIMO configuration (MIMO‐SAR), has been assessed for operational use in monitoring phenomena of geological interest, such as landslides unstable slopes. The system applies the very well‐known and proven Ground-Based Interferometric technique. It guarantees a very short refreshing time compared to traditional systems based on the mechanical movement of the radar transceiver on a rail or the mechanical steering of a real antenna. The system can monitor several phenomena having deformation rates too high to be correctly retrieved by traditional systems currently in use. Implementing a prototype termed MELISSA allowed the testing technique’s performances in two real case studies: a landslide and an unstable volcanic flank. The experimental results were compared with LISA, a well-known Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) interferometer. MELISSA allows for obtaining an excellent accuracy, better than 0.01 mm. The range and angular resolution are on the same order of magnitude as those obtained through LISA. However, the refreshing rate obtained from MELISSA, 0.01 s, guarantees a strong coherence even in challenging environmental scenarios as a flank of an active volcano.","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"55 1","pages":"604 - 621"},"PeriodicalIF":3.7000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/22797254.2022.2141660","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT This study focuses on investigating the capabilities of a Multiple-input multiple-output RADAR. A Radar interferometer, based on an electronically scanned array in MIMO configuration (MIMO‐SAR), has been assessed for operational use in monitoring phenomena of geological interest, such as landslides unstable slopes. The system applies the very well‐known and proven Ground-Based Interferometric technique. It guarantees a very short refreshing time compared to traditional systems based on the mechanical movement of the radar transceiver on a rail or the mechanical steering of a real antenna. The system can monitor several phenomena having deformation rates too high to be correctly retrieved by traditional systems currently in use. Implementing a prototype termed MELISSA allowed the testing technique’s performances in two real case studies: a landslide and an unstable volcanic flank. The experimental results were compared with LISA, a well-known Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) interferometer. MELISSA allows for obtaining an excellent accuracy, better than 0.01 mm. The range and angular resolution are on the same order of magnitude as those obtained through LISA. However, the refreshing rate obtained from MELISSA, 0.01 s, guarantees a strong coherence even in challenging environmental scenarios as a flank of an active volcano.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多输入多输出雷达,用于地面变形监测的地基MIMO SAR
摘要本研究的重点是研究多输入多输出雷达的性能。基于MIMO配置中的电子扫描阵列(MIMO‐SAR)的雷达干涉仪已被评估用于监测地质现象,如滑坡不稳定斜坡。该系统采用了众所周知且经过验证的地面干涉测量技术。与基于雷达收发器在轨道上的机械运动或实际天线的机械转向的传统系统相比,它保证了非常短的刷新时间。该系统可以监测变形率太高而无法由当前使用的传统系统正确检索的几种现象。实现了一个名为MELISSA的原型,使测试技术在两个真实案例研究中发挥了作用:滑坡和不稳定的火山侧翼。将实验结果与著名的地面干涉合成孔径雷达(GBInSAR)干涉仪LISA进行了比较。MELISSA可以获得优于0.01毫米的卓越精度。范围和角度分辨率与通过LISA获得的范围和角度精度在同一数量级上。然而,从MELISSA获得的刷新率为0.01秒,即使在具有挑战性的环境场景中,如活火山的侧翼,也能保证很强的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
2.50%
发文量
51
审稿时长
>12 weeks
期刊介绍: European Journal of Remote Sensing publishes research papers and review articles related to the use of remote sensing technologies. The Journal welcomes submissions on all applications related to the use of active or passive remote sensing to terrestrial, oceanic, and atmospheric environments. The most common thematic areas covered by the Journal include: -land use/land cover -geology, earth and geoscience -agriculture and forestry -geography and landscape -ecology and environmental science -support to land management -hydrology and water resources -atmosphere and meteorology -oceanography -new sensor systems, missions and software/algorithms -pre processing/calibration -classifications -time series/change analysis -data integration/merging/fusion -image processing and analysis -modelling European Journal of Remote Sensing is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read anywhere, at any time, immediately on publication. There are no charges for submission to this journal.
期刊最新文献
Comparison of contemporaneous Sentinel-2 and EnMAP data for vegetation index-based estimation of leaf area index and canopy closure of a boreal forest. Spatial-temporal response of the regional ecological quality to urban settlement development Impact of atmospheric vertical profile on hyperspectral simulations over bright desert pseudo-invariant calibration site Usable observations over Europe: evaluation of compositing windows for Landsat and Sentinel-2 time series Characterizing the variability and trend of rainfall in central highlands of Abbay Basin, Ethiopia: using IMERG-06 dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1