A review study of functional autoregressive models with application to energy forecasting

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2020-07-28 DOI:10.1002/wics.1525
Ying Chen, T. Koch, K. Lim, Xiaofei Xu, Nazgul Zakiyeva
{"title":"A review study of functional autoregressive models with application to energy forecasting","authors":"Ying Chen, T. Koch, K. Lim, Xiaofei Xu, Nazgul Zakiyeva","doi":"10.1002/wics.1525","DOIUrl":null,"url":null,"abstract":"In this data‐rich era, it is essential to develop advanced techniques to analyze and understand large amounts of data and extract the underlying information in a flexible way. We provide a review study on the state‐of‐the‐art statistical time series models for univariate and multivariate functional data with serial dependence. In particular, we review functional autoregressive (FAR) models and their variations under different scenarios. The models include the classic FAR model under stationarity; the FARX and pFAR model dealing with multiple exogenous functional variables and large‐scale mixed‐type exogenous variables; the vector FAR model and common functional principal component technique to handle multiple dimensional functional time series; and the warping FAR, varying coefficient‐FAR and adaptive FAR models to handle seasonal variations, slow varying effects and the more challenging cases of structural changes or breaks respectively. We present the models’ setup and detail the estimation procedure. We discuss the models’ applicability and illustrate the numerical performance using real‐world data of high‐resolution natural gas flows in the high‐pressure gas pipeline network of Germany. We conduct 1‐day and 14‐days‐ahead out‐of‐sample forecasts of the daily gas flow curves. We observe that the functional time series models generally produce stable out‐of‐sample forecast accuracy.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1525","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1525","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

Abstract

In this data‐rich era, it is essential to develop advanced techniques to analyze and understand large amounts of data and extract the underlying information in a flexible way. We provide a review study on the state‐of‐the‐art statistical time series models for univariate and multivariate functional data with serial dependence. In particular, we review functional autoregressive (FAR) models and their variations under different scenarios. The models include the classic FAR model under stationarity; the FARX and pFAR model dealing with multiple exogenous functional variables and large‐scale mixed‐type exogenous variables; the vector FAR model and common functional principal component technique to handle multiple dimensional functional time series; and the warping FAR, varying coefficient‐FAR and adaptive FAR models to handle seasonal variations, slow varying effects and the more challenging cases of structural changes or breaks respectively. We present the models’ setup and detail the estimation procedure. We discuss the models’ applicability and illustrate the numerical performance using real‐world data of high‐resolution natural gas flows in the high‐pressure gas pipeline network of Germany. We conduct 1‐day and 14‐days‐ahead out‐of‐sample forecasts of the daily gas flow curves. We observe that the functional time series models generally produce stable out‐of‐sample forecast accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功能自回归模型在能源预测中的应用综述
在这个数据丰富的时代,必须开发先进的技术来分析和理解大量数据,并以灵活的方式提取底层信息。我们对具有序列依赖性的单变量和多变量函数数据的最新统计时间序列模型进行了综述研究。我们特别回顾了功能自回归(FAR)模型及其在不同场景下的变化。模型包括平稳条件下的经典FAR模型;处理多个外源性功能变量和大规模混合型外源性变量的FARX和pFAR模型;利用向量FAR模型和常用的功能主成分技术处理多维功能时间序列;以及分别用于处理季节变化、缓慢变化效应和更具挑战性的结构变化或断裂的扭曲FAR、变系数FAR和自适应FAR模型。我们介绍了模型的建立和详细的估计过程。我们讨论了模型的适用性,并利用德国高压天然气管网中高分辨率天然气流动的实际数据说明了模型的数值性能。我们提前1天和14天对每日气体流量曲线进行样本外预测。我们观察到,函数时间序列模型通常产生稳定的样本外预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1