{"title":"Reexamination of shear design provisions for high-strength longitudinally RC beams","authors":"Bo Yu, Bujiu Sang, Xiaolei Tao, Bing Li","doi":"10.1680/jmacr.22.00038","DOIUrl":null,"url":null,"abstract":"Lack of information regarding the shear behavior of high-strength longitudinally reinforced concrete beams without shear reinforcement (HRCBW) impedes the design engineers from using the full yield strength of material. Current shear design provisions for HRCBW were reexamined based on probability density function, confidence interval and confidence level. Based on the principal shear mechanism of beam and arch actions, a probabilistic shear capacity model for HRCBW was proposed based on the Bayesian theory and the Markov Chain Monte Carlo (MCMC) method taking into account both aleatory and epistemic uncertainties. Meanwhile, statistical characteristics (e.g. mean value, standard deviation, distribution type) of shear capacity for HRCBW were determined by Kolmogorov-Smirnov (K-S) test and statistical analysis. Moreover, the accuracy and applicability of three major shear design provisions (i.e. ACI 318-19, EC 2, fib MC2010) for HRCBW were reexamined based on probability density function, confidence interval and confidence level.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.22.00038","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lack of information regarding the shear behavior of high-strength longitudinally reinforced concrete beams without shear reinforcement (HRCBW) impedes the design engineers from using the full yield strength of material. Current shear design provisions for HRCBW were reexamined based on probability density function, confidence interval and confidence level. Based on the principal shear mechanism of beam and arch actions, a probabilistic shear capacity model for HRCBW was proposed based on the Bayesian theory and the Markov Chain Monte Carlo (MCMC) method taking into account both aleatory and epistemic uncertainties. Meanwhile, statistical characteristics (e.g. mean value, standard deviation, distribution type) of shear capacity for HRCBW were determined by Kolmogorov-Smirnov (K-S) test and statistical analysis. Moreover, the accuracy and applicability of three major shear design provisions (i.e. ACI 318-19, EC 2, fib MC2010) for HRCBW were reexamined based on probability density function, confidence interval and confidence level.
期刊介绍:
For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed.
Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.