Estimate of carbon stock in the soil via diffuse reflectance spectroscopy (vis/nir) air and orbital remote sensing

Pub Date : 2023-09-01 DOI:10.1590/1983-21252023v36n320rc
Ohana C. O. Faria, G. N. Torres, L. A. D. L. D. Raimo, E. Couto
{"title":"Estimate of carbon stock in the soil via diffuse reflectance spectroscopy (vis/nir) air and orbital remote sensing","authors":"Ohana C. O. Faria, G. N. Torres, L. A. D. L. D. Raimo, E. Couto","doi":"10.1590/1983-21252023v36n320rc","DOIUrl":null,"url":null,"abstract":"ABSTRACT Current procedures for determining soil organic carbon (SOC) content are costly, time-consuming, and generate polluting chemical waste. Therefore, developing new protocols using aerial and orbital remote sensing and diffuse reflectance spectroscopy (DRS) for digitally mapping the stock of soil organic carbon (CS) is essential for promoting actions of research and monitoring SOC in Brazilian soils. Given this, three areas of commercial plots in the region of the Middle North of Mato Grosso were studied, where sampling was carried out for the determination of SOC in the layer from 0 to 30 cm, evaluated by the dry combustion method and estimated through DRS in the visible to near -infrared region - Vis-NIR-SWIR/350-2500 nm). To obtain the images by aerial remote sensing, the Carcará II® Unmanned Aerial Vehicle was used, with a MicaSense® multispectral camera (RGB + NIR + RedEdge) attached. The orbital sensors used were the Sentinel 2® and Planet® satellites. This study showed that soil carbon stock values could be predicted using different modeling approaches based on field and laboratory spectral measurements. Predictive models to estimate SOC can be established using remote and near sensing, thus allowing a better understanding of spatial patterns of SOC in crop fields.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1983-21252023v36n320rc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Current procedures for determining soil organic carbon (SOC) content are costly, time-consuming, and generate polluting chemical waste. Therefore, developing new protocols using aerial and orbital remote sensing and diffuse reflectance spectroscopy (DRS) for digitally mapping the stock of soil organic carbon (CS) is essential for promoting actions of research and monitoring SOC in Brazilian soils. Given this, three areas of commercial plots in the region of the Middle North of Mato Grosso were studied, where sampling was carried out for the determination of SOC in the layer from 0 to 30 cm, evaluated by the dry combustion method and estimated through DRS in the visible to near -infrared region - Vis-NIR-SWIR/350-2500 nm). To obtain the images by aerial remote sensing, the Carcará II® Unmanned Aerial Vehicle was used, with a MicaSense® multispectral camera (RGB + NIR + RedEdge) attached. The orbital sensors used were the Sentinel 2® and Planet® satellites. This study showed that soil carbon stock values could be predicted using different modeling approaches based on field and laboratory spectral measurements. Predictive models to estimate SOC can be established using remote and near sensing, thus allowing a better understanding of spatial patterns of SOC in crop fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
通过漫反射光谱(可见光/近红外)空气和轨道遥感估算土壤中的碳储量
目前测定土壤有机碳(SOC)含量的方法成本高,耗时长,并且会产生污染的化学废物。因此,开发利用航空和轨道遥感以及漫反射光谱(DRS)对土壤有机碳(CS)储量进行数字测绘的新方案,对于促进巴西土壤有机碳的研究和监测行动至关重要。鉴于此,我们对马托格罗索州中北部地区的三个商业地块进行了研究,在那里进行了采样,以测定0至30 cm层的有机碳,通过干燃烧法进行评估,并通过可见光至近红外区域(Vis-NIR-SWIR/350-2500 nm)的DRS进行估算。为了通过航空遥感获得图像,使用carcar II®无人机,附带MicaSense®多光谱相机(RGB + NIR + reddge)。使用的轨道传感器是Sentinel 2®和Planet®卫星。研究表明,基于田间和实验室光谱测量的不同建模方法可以预测土壤碳储量值。利用遥感和遥感技术可以建立土壤有机碳的预测模型,从而更好地了解农田土壤有机碳的空间分布规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1