A note on real estate appraisal in Brazil

Q4 Economics, Econometrics and Finance Revista Brasileira de Economia Pub Date : 2021-07-12 DOI:10.5935/0034-7140.20210003
Thiago Marzagão, R. Ferreira, Leonardo Sales
{"title":"A note on real estate appraisal in Brazil","authors":"Thiago Marzagão, R. Ferreira, Leonardo Sales","doi":"10.5935/0034-7140.20210003","DOIUrl":null,"url":null,"abstract":"Abstract Brazilian banks commonly use linear regression to appraise real estate: they regress price on features like area, location, etc, and use the resulting model to estimate the market value of the target property. But Brazilian banks do not test the predictive performance of those models, which for all we know are no better than random guesses. That introduces huge inefficiencies in the real estate market. Here we propose a machine learning approach to the problem. We use real estate data scraped from 15 thousand online listings and use it to fit a boosted trees model. The resulting model has a median absolute error of 8.16%. We provide all data and source code.","PeriodicalId":52490,"journal":{"name":"Revista Brasileira de Economia","volume":"75 1","pages":"29-36"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Economia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5935/0034-7140.20210003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Brazilian banks commonly use linear regression to appraise real estate: they regress price on features like area, location, etc, and use the resulting model to estimate the market value of the target property. But Brazilian banks do not test the predictive performance of those models, which for all we know are no better than random guesses. That introduces huge inefficiencies in the real estate market. Here we propose a machine learning approach to the problem. We use real estate data scraped from 15 thousand online listings and use it to fit a boosted trees model. The resulting model has a median absolute error of 8.16%. We provide all data and source code.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于巴西房地产估价的一点说明
摘要巴西银行通常使用线性回归来评估房地产:他们根据面积、位置等特征回归价格,并使用由此产生的模型来估计目标房地产的市场价值。但巴西银行并没有测试这些模型的预测性能,据我们所知,这些模型并不比随机猜测更好。这导致房地产市场效率低下。在这里,我们提出了一种机器学习方法来解决这个问题。我们使用从15000个在线房源中收集的房地产数据,并将其用于拟合增强树模型。所得模型的中值绝对误差为8.16%。我们提供了所有数据和源代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Brasileira de Economia
Revista Brasileira de Economia Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
0.40
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊介绍: A Revista Brasileira de Economia (RBE) é a mais antiga publicação de Economia do Brasil, e a segunda mais antiga da América Latina. Seus fundadores foram Arizio de Viana, o primeiro editor, e Eugênio Gudin, um dos mais influentes economistas da história brasileira. A RBE foi apresentada no seu primeiro número pelo professor Luiz Simões Lopes, em uma Introdução que poderia constar ainda hoje de qualquer número da revista.
期刊最新文献
Incentivos fiscais são efetivos na melhoria dos serviços educacionais? Cota-parte do ICMS no acesso à educação Uma nota sobre a avaliação do programa Agroamigo através de modelos Autoregressivos Vetoriais em Painel Modeling multivariate time series with copulas: Implications for pricing revenue insurance Descartando favorecimento político a beneficiários de programas habitacionais: Uma aplicação de Regressão em Descontinuidade O Impacto do comercio internacional sobre as condições de saúde: Uma abordagem estrutural
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1