C. Chadwick, J. Gironás, Fernando González-Leiva, Sebastián Aedo
{"title":"Bias adjustment to preserve changes in variability: the unbiased mapping of GCM changes","authors":"C. Chadwick, J. Gironás, Fernando González-Leiva, Sebastián Aedo","doi":"10.1080/02626667.2023.2201450","DOIUrl":null,"url":null,"abstract":"ABSTRACT Standard quantile mapping (QM) performs well, as a bias adjustment method, in removing historical climate biases, but it can significantly alter a global climate model (GCM) signal. Methods that do incorporate GCM changes commonly consider mean changes only. Quantile delta mapping (QDM) is an exception, as it explicitly preserves relative changes in the quantiles, but it might present biases in preserving GCMs changes in standard deviation. In this work we propose the unbiased quantile mapping (UQM) method, which by construction preserves GCM changes of the mean and the standard deviation. Synthetic experiments and four Chilean locations are used to compare the performance of UQM against QDM, QM, detrended quantile mapping, and scale distribution mapping. All the methods outperform QM, but a tradeoff exists between preserving the GCM relative changes in the quantiles (QDM is recommended in this case), or changes in the GCM moments (UQM is recommended in this case).","PeriodicalId":55042,"journal":{"name":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","volume":"68 1","pages":"1184 - 1201"},"PeriodicalIF":2.8000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02626667.2023.2201450","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Standard quantile mapping (QM) performs well, as a bias adjustment method, in removing historical climate biases, but it can significantly alter a global climate model (GCM) signal. Methods that do incorporate GCM changes commonly consider mean changes only. Quantile delta mapping (QDM) is an exception, as it explicitly preserves relative changes in the quantiles, but it might present biases in preserving GCMs changes in standard deviation. In this work we propose the unbiased quantile mapping (UQM) method, which by construction preserves GCM changes of the mean and the standard deviation. Synthetic experiments and four Chilean locations are used to compare the performance of UQM against QDM, QM, detrended quantile mapping, and scale distribution mapping. All the methods outperform QM, but a tradeoff exists between preserving the GCM relative changes in the quantiles (QDM is recommended in this case), or changes in the GCM moments (UQM is recommended in this case).
期刊介绍:
Hydrological Sciences Journal is an international journal focused on hydrology and the relationship of water to atmospheric processes and climate.
Hydrological Sciences Journal is the official journal of the International Association of Hydrological Sciences (IAHS).
Hydrological Sciences Journal aims to provide a forum for original papers and for the exchange of information and views on significant developments in hydrology worldwide on subjects including:
Hydrological cycle and processes
Surface water
Groundwater
Water resource systems and management
Geographical factors
Earth and atmospheric processes
Hydrological extremes and their impact
Hydrological Sciences Journal offers a variety of formats for paper submission, including original articles, scientific notes, discussions, and rapid communications.