A review on microholes formation in glass-based substrates by electrochemical discharge drilling for MEMS applications

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Machining Science and Technology Pub Date : 2022-03-04 DOI:10.1080/10910344.2022.2044857
Tarlochan Singh, J. Arab, P. Dixit
{"title":"A review on microholes formation in glass-based substrates by electrochemical discharge drilling for MEMS applications","authors":"Tarlochan Singh, J. Arab, P. Dixit","doi":"10.1080/10910344.2022.2044857","DOIUrl":null,"url":null,"abstract":"Abstract Continuous demands to develop advanced radio-frequency transmission at higher frequencies have initiated glass-based materials as a substrate in radio-frequency micro-electro-mechanical-systems (MEMS) applications. Due to its superior electrical insulation characteristics, glass has lower substrate losses than silicon when an electrical signal is transmitted at higher frequencies. The optical transparent nature of glass substrate makes it an attractive choice for microfluidics and Bio-MEMS applications. Despite having superior properties, glass usage has remained limited mainly due to the lack of suitable micromachining processes. Due to its hard and brittle nature, creating microfeatures by conventional methods has been a challenge. To date, laser ablation and plasma etching have been employed to create micro-size through-holes in glass substrate; however, both have severe process limitations. Electrochemical discharge drilling (ECDD) is an emerging method that possesses similar capabilities as existing technologies at a low cost. Therefore, this manuscript is presented to describe the ECDD process's potential and their hybrid methods in the direction of fabricating micro-holes for MEMS applications. This manuscript includes the fundamental aspects of the ECDD process and a detailed description of components used to develop its various configurations. ECDD-based hybrid methods have also been presented along with their mechanisms and capabilities. The existing challenges and the possible research potentials have been derived based on previously reported capabilities to establish the correlation between the ECDD process and MEMS devices.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2022.2044857","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 10

Abstract

Abstract Continuous demands to develop advanced radio-frequency transmission at higher frequencies have initiated glass-based materials as a substrate in radio-frequency micro-electro-mechanical-systems (MEMS) applications. Due to its superior electrical insulation characteristics, glass has lower substrate losses than silicon when an electrical signal is transmitted at higher frequencies. The optical transparent nature of glass substrate makes it an attractive choice for microfluidics and Bio-MEMS applications. Despite having superior properties, glass usage has remained limited mainly due to the lack of suitable micromachining processes. Due to its hard and brittle nature, creating microfeatures by conventional methods has been a challenge. To date, laser ablation and plasma etching have been employed to create micro-size through-holes in glass substrate; however, both have severe process limitations. Electrochemical discharge drilling (ECDD) is an emerging method that possesses similar capabilities as existing technologies at a low cost. Therefore, this manuscript is presented to describe the ECDD process's potential and their hybrid methods in the direction of fabricating micro-holes for MEMS applications. This manuscript includes the fundamental aspects of the ECDD process and a detailed description of components used to develop its various configurations. ECDD-based hybrid methods have also been presented along with their mechanisms and capabilities. The existing challenges and the possible research potentials have been derived based on previously reported capabilities to establish the correlation between the ECDD process and MEMS devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEMS应用中玻璃基衬底微孔的电化学放电钻削研究进展
在更高频率下发展先进的射频传输的持续需求已经启动了玻璃基材料作为射频微机电系统(MEMS)应用的基板。由于其优越的电绝缘特性,当电信号以更高的频率传输时,玻璃的衬底损耗比硅低。玻璃基板的光学透明特性使其成为微流体和生物mems应用的有吸引力的选择。尽管具有优越的性能,玻璃的使用仍然有限,主要是由于缺乏合适的微加工工艺。由于其硬脆的性质,通过传统方法创建微特征一直是一个挑战。迄今为止,激光烧蚀和等离子体蚀刻已被用于在玻璃基板上制造微尺寸通孔;然而,两者都有严重的工艺限制。电化学放电钻井(ECDD)是一种新兴技术,具有与现有技术相似的性能和低成本。因此,本文介绍了ECDD工艺的潜力及其混合方法在制造微孔MEMS应用方面的应用。该手稿包括ECDD过程的基本方面和用于开发其各种配置的组件的详细描述。还介绍了基于ecdd的混合方法及其机制和功能。现有的挑战和可能的研究潜力是基于先前报道的建立ECDD工艺和MEMS器件之间相关性的能力而得出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
期刊最新文献
Investigation on the machining characteristics of AZ91 magnesium alloy using uncoated and CVD-diamond coated WC-Co inserts Combination of minimum quantity lubrication (MQL) with solid lubricant (SL): challenges, predictions and implications for sustainability Novel insights into conventional machining of metal additive manufactured components: a comprehensive review Multiobjective optimization of end milling parameters for enhanced machining performance on 42CrMo4 using machine learning and NSGA-III Flow field design and simulation in electrochemical machining for closed integral components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1