Using new computer based techniques to optimise energy consumption in agricultural land levelling

Q3 Agricultural and Biological Sciences Research in Agricultural Engineering Pub Date : 2021-12-10 DOI:10.17221/20/2021-rae
S. Almaliki, N. Monjezi
{"title":"Using new computer based techniques to optimise energy consumption in agricultural land levelling","authors":"S. Almaliki, N. Monjezi","doi":"10.17221/20/2021-rae","DOIUrl":null,"url":null,"abstract":"Land levelling is one of the most energy-demanding steps in soil preparation. There are many limiting factors for a specific land levelling operation, such as fertile topsoil conservation, limited allowed slope, specific cut to fill ratio, etc. These limitations make optimisation problems of land levelling even more complicated. In this research, three computational and evolutionary methods including ICA, PSO, GA along with MLS were utilised as optimisation methods to minimise the soil cut and fill volumes and to determine the preferred levelling plane. The results indicated that ICA had the most efficient solution for the energy optimisation in the land levelling among the other investigated methods by saving 29% (17 GJ) of the total energy consumption compared with MLS. This study deals with optimising the energy consumption during land levelling projects using new computer-based techniques and compares them to the MLS method as a benchmark. All in all, ICA, PSO, and GA performed much better than MLS by saving 29, 17, and 10% of the total energy consumption in their best model (number 1 models), respectively. Nonetheless, with these great capacities for saving energy in developing countries, unfortunately, the lack of education and excess subsidies on fossil fuels nullify these potentials.","PeriodicalId":20906,"journal":{"name":"Research in Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/20/2021-rae","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Land levelling is one of the most energy-demanding steps in soil preparation. There are many limiting factors for a specific land levelling operation, such as fertile topsoil conservation, limited allowed slope, specific cut to fill ratio, etc. These limitations make optimisation problems of land levelling even more complicated. In this research, three computational and evolutionary methods including ICA, PSO, GA along with MLS were utilised as optimisation methods to minimise the soil cut and fill volumes and to determine the preferred levelling plane. The results indicated that ICA had the most efficient solution for the energy optimisation in the land levelling among the other investigated methods by saving 29% (17 GJ) of the total energy consumption compared with MLS. This study deals with optimising the energy consumption during land levelling projects using new computer-based techniques and compares them to the MLS method as a benchmark. All in all, ICA, PSO, and GA performed much better than MLS by saving 29, 17, and 10% of the total energy consumption in their best model (number 1 models), respectively. Nonetheless, with these great capacities for saving energy in developing countries, unfortunately, the lack of education and excess subsidies on fossil fuels nullify these potentials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用新的电脑技术优化农地平整过程中的能源消耗
平整土地是土壤准备中最耗能的步骤之一。具体的土地平整作业有许多限制因素,如肥沃的表土保持,有限的允许坡度,特定的切填比等。这些限制使得土地平整的优化问题更加复杂。在本研究中,利用三种计算和进化方法,包括ICA、PSO、GA和MLS作为优化方法,以最小化土壤切割和填充体积,并确定优选的找平面。结果表明,与MLS相比,ICA在土地平整中具有最有效的能源优化解决方案,可节省总能耗的29% (17 GJ)。本研究探讨如何利用新的电脑技术优化土地平整工程的能源消耗,并将其与MLS方法作为基准进行比较。总而言之,ICA、PSO和GA在其最佳模型(1号模型)中分别节省了总能耗的29%、17%和10%,比MLS表现得更好。然而,发展中国家节约能源的巨大能力,不幸的是,缺乏教育和对化石燃料的过度补贴使这些潜力化为泡铁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Research in Agricultural Engineering
Research in Agricultural Engineering Engineering, agriculture-
CiteScore
1.40
自引率
0.00%
发文量
21
审稿时长
24 weeks
期刊介绍: Original scientific papers, short communications, information, and studies covering all areas of agricultural engineering, agricultural technology, processing of agricultural products, countryside buildings and related problems from ecology, energetics, economy, ergonomy and applied physics and chemistry. Papers are published in English.
期刊最新文献
The effect of parameter adjustment in sago palm classification-based convolutional neural network (CNN) model Influence of soil tillage technology on tillage erosion Fabrication and performance test of a multipurpose ohmic heating apparatus with a real-time data logging system based on low-cost sensors Enhancing melon yield through a low-cost drip irrigation control system with time and soil sensor Reconstructed military machine for unique field testing of agricultural machinery capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1