{"title":"An industrial intelligent grasping system based on convolutional neural network","authors":"Jiang Daqi, Wang Hong, Zhou Bin, Wei Chunfeng","doi":"10.1108/aa-03-2021-0036","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to save time spent on manufacturing the data set and make the intelligent grasping system easy to deploy into a practical industrial environment. Due to the accuracy and robustness of the convolutional neural network, the success rate of the gripping operation reached a high level.\n\n\nDesign/Methodology/Approach\nThe proposed system comprises two diverse kinds of convolutional neuron network (CNN) algorithms used in different stages and a binocular eye-in-hand system on the end effector, which detects the position and orientation of workpiece. Both algorithms are trained by the data sets containing images and annotations, which are generated automatically by the proposed method.\n\n\nFindings\nThe approach can be successfully applied to standard position-controlled robots common in the industry. The algorithm performs excellently in terms of elapsed time. Procession of a 256 × 256 image spends less than 0.1 s without relying on high-performance GPUs. The approach is validated in a series of grasping experiments. This method frees workers from monotonous work and improves factory productivity.\n\n\nOriginality/Value\nThe authors propose a novel neural network whose performance is tested to be excellent. Moreover, experimental results demonstrate that the proposed second level is extraordinary robust subject to environmental variations. The data sets are generated automatically which saves time spent on manufacturing the data set and makes the intelligent grasping system easy to deploy into a practical industrial environment. Due to the accuracy and robustness of the convolutional neural network, the success rate of the gripping operation reached a high level.\n","PeriodicalId":55448,"journal":{"name":"Assembly Automation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assembly Automation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/aa-03-2021-0036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose
This paper aims to save time spent on manufacturing the data set and make the intelligent grasping system easy to deploy into a practical industrial environment. Due to the accuracy and robustness of the convolutional neural network, the success rate of the gripping operation reached a high level.
Design/Methodology/Approach
The proposed system comprises two diverse kinds of convolutional neuron network (CNN) algorithms used in different stages and a binocular eye-in-hand system on the end effector, which detects the position and orientation of workpiece. Both algorithms are trained by the data sets containing images and annotations, which are generated automatically by the proposed method.
Findings
The approach can be successfully applied to standard position-controlled robots common in the industry. The algorithm performs excellently in terms of elapsed time. Procession of a 256 × 256 image spends less than 0.1 s without relying on high-performance GPUs. The approach is validated in a series of grasping experiments. This method frees workers from monotonous work and improves factory productivity.
Originality/Value
The authors propose a novel neural network whose performance is tested to be excellent. Moreover, experimental results demonstrate that the proposed second level is extraordinary robust subject to environmental variations. The data sets are generated automatically which saves time spent on manufacturing the data set and makes the intelligent grasping system easy to deploy into a practical industrial environment. Due to the accuracy and robustness of the convolutional neural network, the success rate of the gripping operation reached a high level.
期刊介绍:
Assembly Automation publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of assembly technology and automation, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of industry developments.
All research articles undergo rigorous double-blind peer review, and the journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations.