A 5-km gridded product development of daily temperature and precipitation for Bangladesh, Nepal, and Pakistan from 1981 to 2016

IF 3.3 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Geoscience Data Journal Pub Date : 2023-09-06 DOI:10.1002/gdj3.217
Shaukat Ali, Zulfiqar A. Bhutta, Michelle S. Reboita, Muhammad Arif Goheer, Shiva Ebrahimi, Jose Roberto Rozante, Rida S. Kiani, Sher Muhammad, Firdos Khan, Md Mizanur Rahman, Madan L. Shreshta, Li Dan
{"title":"A 5-km gridded product development of daily temperature and precipitation for Bangladesh, Nepal, and Pakistan from 1981 to 2016","authors":"Shaukat Ali,&nbsp;Zulfiqar A. Bhutta,&nbsp;Michelle S. Reboita,&nbsp;Muhammad Arif Goheer,&nbsp;Shiva Ebrahimi,&nbsp;Jose Roberto Rozante,&nbsp;Rida S. Kiani,&nbsp;Sher Muhammad,&nbsp;Firdos Khan,&nbsp;Md Mizanur Rahman,&nbsp;Madan L. Shreshta,&nbsp;Li Dan","doi":"10.1002/gdj3.217","DOIUrl":null,"url":null,"abstract":"<p>Many efforts have been made by the scientific community to produce gridded datasets with high spatial resolution because they are essential for climate change assessment, impact studies, decision-making, etc. This study fits into this context and describes the methods used to prepare a 5-km gridded product of precipitation and minimum and maximum temperatures by merging observed data from meteorological stations, from 1981 to 2016, of Bangladesh, Nepal, and Pakistan with ERA5 reanalysis. The step-by-step methods for station data quality control and the development of the 5-km gridded data are presented. Additionally, we use the 5-km dataset to show the main climate features of the three countries, which facilitate comparison with other data sources in the literature.</p>","PeriodicalId":54351,"journal":{"name":"Geoscience Data Journal","volume":"11 3","pages":"292-302"},"PeriodicalIF":3.3000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.217","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Data Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.217","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Many efforts have been made by the scientific community to produce gridded datasets with high spatial resolution because they are essential for climate change assessment, impact studies, decision-making, etc. This study fits into this context and describes the methods used to prepare a 5-km gridded product of precipitation and minimum and maximum temperatures by merging observed data from meteorological stations, from 1981 to 2016, of Bangladesh, Nepal, and Pakistan with ERA5 reanalysis. The step-by-step methods for station data quality control and the development of the 5-km gridded data are presented. Additionally, we use the 5-km dataset to show the main climate features of the three countries, which facilitate comparison with other data sources in the literature.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1981 - 2016年孟加拉国、尼泊尔和巴基斯坦日温度和降水的5公里格网产品发展
科学界已经做出了许多努力来制作具有高空间分辨率的网格数据集,因为它们对气候变化评估、影响研究、决策等至关重要。本研究符合这一背景,并描述了通过将孟加拉国、尼泊尔和巴基斯坦1981年至2016年气象站的观测数据与ERA5再分析相结合,制备降水量与最低和最高温度的5公里网格乘积的方法。介绍了台站数据质量控制的分步方法和5km网格数据的开发。此外,我们使用5公里的数据集来显示这三个国家的主要气候特征,这有助于与文献中的其他数据源进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoscience Data Journal
Geoscience Data Journal GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
5.90
自引率
9.40%
发文量
35
审稿时长
4 weeks
期刊介绍: Geoscience Data Journal provides an Open Access platform where scientific data can be formally published, in a way that includes scientific peer-review. Thus the dataset creator attains full credit for their efforts, while also improving the scientific record, providing version control for the community and allowing major datasets to be fully described, cited and discovered. An online-only journal, GDJ publishes short data papers cross-linked to – and citing – datasets that have been deposited in approved data centres and awarded DOIs. The journal will also accept articles on data services, and articles which support and inform data publishing best practices. Data is at the heart of science and scientific endeavour. The curation of data and the science associated with it is as important as ever in our understanding of the changing earth system and thereby enabling us to make future predictions. Geoscience Data Journal is working with recognised Data Centres across the globe to develop the future strategy for data publication, the recognition of the value of data and the communication and exploitation of data to the wider science and stakeholder communities.
期刊最新文献
Issue Information Issue Information Exploring Jalisco's water quality: A comprehensive web tool for limnological and phytoplankton data HSPEI: A 1-km spatial resolution SPEI dataset across the Chinese mainland from 2001 to 2022 High-resolution atmospheric CO2 concentration data simulated in WRF-Chem over East Asia for 10 years
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1