Exploring and Comparing Unsupervised Clustering Algorithms

Q1 Social Sciences Journal of Open Research Software Pub Date : 2020-10-07 DOI:10.5334/jors.269
M. Lavielle, Philip D. Waggoner
{"title":"Exploring and Comparing Unsupervised Clustering Algorithms","authors":"M. Lavielle, Philip D. Waggoner","doi":"10.5334/jors.269","DOIUrl":null,"url":null,"abstract":"One of the most widely used approaches to explore and understand non-random structure in data in a largely assumption-free manner is clustering. In this paper, we detail two original Shiny apps written in R, openly developed at Github, and archived at Zenodo, for exploring and comparing major unsupervised algorithms for clustering applications: k-means and Gaussian mixture models via Expectation-Maximization. The first app leverages simulated data and the second uses Fisher’s Iris data set to visually and numerically compare the clustering algorithms using data familiar to many applied researchers. In addition to being valuable tools for comparing these clustering techniques, the open source architecture of our Shiny apps allows for wide engagement and extension by the broader open science community, such as including different data sets and algorithms.","PeriodicalId":37323,"journal":{"name":"Journal of Open Research Software","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Research Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jors.269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

One of the most widely used approaches to explore and understand non-random structure in data in a largely assumption-free manner is clustering. In this paper, we detail two original Shiny apps written in R, openly developed at Github, and archived at Zenodo, for exploring and comparing major unsupervised algorithms for clustering applications: k-means and Gaussian mixture models via Expectation-Maximization. The first app leverages simulated data and the second uses Fisher’s Iris data set to visually and numerically compare the clustering algorithms using data familiar to many applied researchers. In addition to being valuable tools for comparing these clustering techniques, the open source architecture of our Shiny apps allows for wide engagement and extension by the broader open science community, such as including different data sets and algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索和比较无监督聚类算法
聚类是在很大程度上不需要假设的情况下探索和理解数据中的非随机结构的最广泛使用的方法之一。在本文中,我们详细介绍了两个用R语言编写的原始Shiny应用程序,它们在Github上公开开发,并存档于Zenodo,用于探索和比较聚类应用的主要无监督算法:k-means和高斯混合模型。第一个应用程序利用模拟数据,第二个应用程序使用Fisher的Iris数据集,使用许多应用研究人员熟悉的数据,从视觉上和数字上比较聚类算法。除了作为比较这些聚类技术的有价值的工具之外,Shiny应用程序的开源架构允许更广泛的开放科学社区广泛参与和扩展,例如包括不同的数据集和算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Open Research Software
Journal of Open Research Software Social Sciences-Library and Information Sciences
CiteScore
6.50
自引率
0.00%
发文量
7
审稿时长
21 weeks
期刊最新文献
Taskfarm: A Client/Server Framework for Supporting Massive Embarrassingly Parallel Workloads GTdownloader: A Python Package to Download, Visualize, and Export Georeferenced Tweets From the Twitter API A NetHack Learning Environment Language Wrapper for Autonomous Agents Automated Discovery of Container Executables Fan-Slicer: A Pycuda Package for Fast Reslicing of Ultrasound Shaped Planes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1