Dynamic finite cylindrical cavity-expansion models for cellular steel tube confined concrete targets normally impacted by rigid sharp-nosed projectiles

IF 2.1 Q2 ENGINEERING, CIVIL International Journal of Protective Structures Pub Date : 2021-06-28 DOI:10.1177/20414196211027288
Chaomei Meng, Dian-yi Song, Q. Tan, Z. Jiang, Liangcai Cai, Yong Shen
{"title":"Dynamic finite cylindrical cavity-expansion models for cellular steel tube confined concrete targets normally impacted by rigid sharp-nosed projectiles","authors":"Chaomei Meng, Dian-yi Song, Q. Tan, Z. Jiang, Liangcai Cai, Yong Shen","doi":"10.1177/20414196211027288","DOIUrl":null,"url":null,"abstract":"Cellular steel-tube-confined concrete (CSTCC) targets show improved anti-penetration performance over single-cell STCC targets due to the confinement effect of surrounding cells on the impacted cell. Dynamic finite cylindrical cavity-expansion (FCCE) models including radial confinement effect were developed to predict the depth of penetration (DOP) for CSTCC targets normally penetrated by rigid sharp-nosed projectiles, and stiffness of radial confinement was achieved with the elastic solution of infinite cylindrical shell in Winkler medium. Steady responses of dynamic FCCE models were obtained on the assumption of incompressibility of concrete, failure of comminuted zone with Heok–Brown criterion and two possible response modes of the confined concrete in the impacted cell. Furthermore, a DOP model for CSTCC targets normally impacted by rigid projectiles was also proposed on the basis of the dynamic FCCE approximate model. Lastly, relevant penetration tests of CSTCC targets normally penetrated by 12.7 mm armor piecing projectile (APP) were taken as examples to validate the dynamic FCCE models and the corresponding DOP model. The results show that the DOP results based on dynamic FCCE model agree well with those of the CSTCC targets normally penetrated by rigid conical or other sharp-nosed projectiles.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":"12 1","pages":"517 - 540"},"PeriodicalIF":2.1000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/20414196211027288","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Protective Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20414196211027288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular steel-tube-confined concrete (CSTCC) targets show improved anti-penetration performance over single-cell STCC targets due to the confinement effect of surrounding cells on the impacted cell. Dynamic finite cylindrical cavity-expansion (FCCE) models including radial confinement effect were developed to predict the depth of penetration (DOP) for CSTCC targets normally penetrated by rigid sharp-nosed projectiles, and stiffness of radial confinement was achieved with the elastic solution of infinite cylindrical shell in Winkler medium. Steady responses of dynamic FCCE models were obtained on the assumption of incompressibility of concrete, failure of comminuted zone with Heok–Brown criterion and two possible response modes of the confined concrete in the impacted cell. Furthermore, a DOP model for CSTCC targets normally impacted by rigid projectiles was also proposed on the basis of the dynamic FCCE approximate model. Lastly, relevant penetration tests of CSTCC targets normally penetrated by 12.7 mm armor piecing projectile (APP) were taken as examples to validate the dynamic FCCE models and the corresponding DOP model. The results show that the DOP results based on dynamic FCCE model agree well with those of the CSTCC targets normally penetrated by rigid conical or other sharp-nosed projectiles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
刚性尖嘴弹对蜂窝式钢管约束混凝土目标的动态有限圆柱空腔扩展模型
由于周围细胞对受冲击细胞的限制作用,细胞钢管约束混凝土(CSTCC)靶比单细胞STCC靶表现出更好的抗穿透性能。建立了包括径向约束效应的动态有限圆柱腔膨胀模型,用于预测刚性尖鼻弹正常穿透CSTCC目标的穿透深度,并利用Winkler介质中无限圆柱壳的弹性解获得了径向约束刚度。基于混凝土的不可压缩性、Heok–Brown准则的粉碎区破坏以及受冲击单元中约束混凝土的两种可能的响应模式,获得了动态FCCE模型的稳态响应。此外,在动态FCCE近似模型的基础上,还提出了CSTCC目标常受刚性弹丸撞击的DOP模型。最后,CSTCC目标的相关穿透试验通常穿透12.7 以毫米装甲拼接弹(APP)为例,对动态FCCE模型和相应的DOP模型进行了验证。结果表明,基于动态FCCE模型的DOP结果与刚性圆锥或其他尖鼻弹通常侵彻的CSTCC目标的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
25.00%
发文量
48
期刊最新文献
Numerical modeling and simulation of cable barriers under vehicular impacts on a sloped median Experimental study of the low-velocity impact behavior of open-cell aluminum foam made by the infiltration method Wave-absorbing performance of alumina thin-walled hollow particles under freezing condition On the penetration of rigid spheres in metallic targets High-velocity impact experiments and quantitative damage evaluation for finite ultra-high-performance concrete targets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1