Smart Platinum Nanostructures: A Journey from Synthesis to Advanced Theranostic Applications

Akash Kumar, Nabojit Das, R. Rayavarapu
{"title":"Smart Platinum Nanostructures: A Journey from Synthesis to Advanced Theranostic Applications","authors":"Akash Kumar, Nabojit Das, R. Rayavarapu","doi":"10.3390/jnt4030017","DOIUrl":null,"url":null,"abstract":"A significant paradigm shift has been observed in the past decade in the area of theranostics owing to the development of various isotropic and anisotropic metal nanostructures, simultaneous with improved imaging modalities. Platinum-based nanostructures are advancing in a plethora of clinical applications as theranostics tools owing to their unique behavior concerning their size, shape, and surface chemistry at the nanoscale regime. Platinum nanostructures are optically active and provide significant potential to the field of theranostics by simplifying diagnosis and therapeutics, thus providing key solutions through nano-enabled technologies. The review emphasizes the potential of platinum nanostructures that have immense potential in vitro and in vivo scenarios as nanocarriers. Still, their potential in terms of photothermal active agents has not been well explored or reported. Nanotheranostics has emerged as a platform where various noble metal nanoparticles are effectively efficient as photothermal agents in bringing precision to therapy and diagnostics. Platinum, as an antioxidant and a stable nanocarrier, will enable them to act as photosensitizers when conjugated to affinity molecules and plays a key role in efficient treatment and diagnosis. The review envisions bringing together the possibilities of the safe-by-design synthesis of platinum nanostructures and their potential role in both in vitro and in vivo applications. A roadmap describing the challenges, pitfalls, and possibilities of influencing platinum nanostructures to overcome the existing biological/targeting barriers is elaborated. This review provides a literature survey on platinum nanostructures in theranostics, providing novel strategies in bio-imaging, diagnostics, and nanomedicine.","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanotheranostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jnt4030017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A significant paradigm shift has been observed in the past decade in the area of theranostics owing to the development of various isotropic and anisotropic metal nanostructures, simultaneous with improved imaging modalities. Platinum-based nanostructures are advancing in a plethora of clinical applications as theranostics tools owing to their unique behavior concerning their size, shape, and surface chemistry at the nanoscale regime. Platinum nanostructures are optically active and provide significant potential to the field of theranostics by simplifying diagnosis and therapeutics, thus providing key solutions through nano-enabled technologies. The review emphasizes the potential of platinum nanostructures that have immense potential in vitro and in vivo scenarios as nanocarriers. Still, their potential in terms of photothermal active agents has not been well explored or reported. Nanotheranostics has emerged as a platform where various noble metal nanoparticles are effectively efficient as photothermal agents in bringing precision to therapy and diagnostics. Platinum, as an antioxidant and a stable nanocarrier, will enable them to act as photosensitizers when conjugated to affinity molecules and plays a key role in efficient treatment and diagnosis. The review envisions bringing together the possibilities of the safe-by-design synthesis of platinum nanostructures and their potential role in both in vitro and in vivo applications. A roadmap describing the challenges, pitfalls, and possibilities of influencing platinum nanostructures to overcome the existing biological/targeting barriers is elaborated. This review provides a literature survey on platinum nanostructures in theranostics, providing novel strategies in bio-imaging, diagnostics, and nanomedicine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能铂纳米结构:从合成到高级Theranos应用的历程
在过去的十年里,由于各种各向同性和各向异性金属纳米结构的发展,以及成像模式的改进,在治疗学领域观察到了重大的范式转变。铂基纳米结构作为治疗工具,由于其在纳米尺度范围内的尺寸、形状和表面化学方面的独特行为,在大量临床应用中取得了进展。铂纳米结构具有光学活性,通过简化诊断和治疗,为治疗学领域提供了巨大潜力,从而通过纳米技术提供了关键解决方案。该综述强调了铂纳米结构作为纳米载体在体外和体内具有巨大潜力的潜力。然而,它们在光热活性剂方面的潜力尚未得到很好的探索或报道。纳米技术已经成为一个平台,在这个平台上,各种贵金属纳米颗粒作为光热剂有效地为治疗和诊断带来精确性。铂作为一种抗氧化剂和稳定的纳米载体,当与亲和分子结合时,将使它们能够充当光敏剂,并在有效的治疗和诊断中发挥关键作用。该综述设想通过设计安全合成铂纳米结构的可能性及其在体外和体内应用中的潜在作用。阐述了影响铂纳米结构克服现有生物/靶向障碍的挑战、陷阱和可能性的路线图。这篇综述提供了一篇关于治疗学中铂纳米结构的文献综述,为生物成像、诊断和纳米医学提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paradoxical Roles of Carbon Nanotubes in Cancer Therapy and Carcinogenesis Graphene Oxide Chemical Refining Screening to Improve Blood Compatibility of Graphene-Based Nanomaterials The Role of Fullerenes in Neurodegenerative Disorders Efficacy of 15 nm Gold Nanoparticles for Image-Guided Gliosarcoma Radiotherapy Enhancing Antibody Exposure in the Central Nervous System: Mechanisms of Uptake, Clearance, and Strategies for Improved Brain Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1