Opportunities and Barriers for Adoption of a Decision-Support Tool for Alzheimer’s Disease

Maura Bellio, D. Furniss, N. Oxtoby, Sara Garbarino, Nicholas C. Firth, A. Ribbens, D. Alexander, A. Blandford
{"title":"Opportunities and Barriers for Adoption of a Decision-Support Tool for Alzheimer’s Disease","authors":"Maura Bellio, D. Furniss, N. Oxtoby, Sara Garbarino, Nicholas C. Firth, A. Ribbens, D. Alexander, A. Blandford","doi":"10.1145/3462764","DOIUrl":null,"url":null,"abstract":"Clinical decision-support tools (DSTs) represent a valuable resource in healthcare. However, lack of Human Factors considerations and early design research has often limited their successful adoption. To complement previous technically focused work, we studied adoption opportunities of a future DST built on a predictive model of Alzheimer’s Disease (AD) progression. Our aim is two-fold: exploring adoption opportunities for DSTs in AD clinical care, and testing a novel combination of methods to support this process. We focused on understanding current clinical needs and practices, and the potential for such a tool to be integrated into the setting, prior to its development. Our user-centred approach was based on field observations and semi-structured interviews, analysed through workflow analysis, user profiles, and a design-reality gap model. The first two are common practice, whilst the latter provided added value in highlighting specific adoption needs. We identified the likely early adopters of the tool as being both psychiatrists and neurologists based in research-oriented clinical settings. We defined ten key requirements for the translation and adoption of DSTs for AD around IT, user, and contextual factors. Future works can use and build on these requirements to stand a greater chance to get adopted in the clinical setting.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"2 1","pages":"1 - 19"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3462764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Clinical decision-support tools (DSTs) represent a valuable resource in healthcare. However, lack of Human Factors considerations and early design research has often limited their successful adoption. To complement previous technically focused work, we studied adoption opportunities of a future DST built on a predictive model of Alzheimer’s Disease (AD) progression. Our aim is two-fold: exploring adoption opportunities for DSTs in AD clinical care, and testing a novel combination of methods to support this process. We focused on understanding current clinical needs and practices, and the potential for such a tool to be integrated into the setting, prior to its development. Our user-centred approach was based on field observations and semi-structured interviews, analysed through workflow analysis, user profiles, and a design-reality gap model. The first two are common practice, whilst the latter provided added value in highlighting specific adoption needs. We identified the likely early adopters of the tool as being both psychiatrists and neurologists based in research-oriented clinical settings. We defined ten key requirements for the translation and adoption of DSTs for AD around IT, user, and contextual factors. Future works can use and build on these requirements to stand a greater chance to get adopted in the clinical setting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用阿尔茨海默病决策支持工具的机会和障碍
临床决策支持工具(DST)是医疗保健领域的宝贵资源。然而,缺乏人为因素的考虑和早期的设计研究往往限制了它们的成功采用。为了补充之前以技术为重点的工作,我们研究了基于阿尔茨海默病(AD)进展预测模型的未来DST的采用机会。我们的目标有两个:探索DST在AD临床护理中的采用机会,并测试一种新的方法组合来支持这一过程。我们专注于了解当前的临床需求和实践,以及在开发之前将此类工具集成到环境中的潜力。我们以用户为中心的方法基于实地观察和半结构化访谈,通过工作流程分析、用户档案和设计-现实差距模型进行分析。前两种是常见的做法,而后者在强调具体的采用需求方面提供了附加值。我们确定,该工具的早期使用者可能是以研究为导向的临床环境中的精神科医生和神经学家。我们围绕IT、用户和上下文因素,为AD的DST的翻译和采用定义了十个关键要求。未来的工作可以使用并建立在这些要求的基础上,以便有更大的机会在临床环境中被采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1