A Comprehensive Approach to Investigating Fluorine-Bearing Gas Mixtures

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY Eurasian Chemico-Technological Journal Pub Date : 2022-12-12 DOI:10.18321/ectj1472
A. Andreev, D. S. Pashkevich, D. Bryankin, N. Belov, P. S. Kambur, V. V. Kapustin, S. Zhuravkov
{"title":"A Comprehensive Approach to Investigating Fluorine-Bearing Gas Mixtures","authors":"A. Andreev, D. S. Pashkevich, D. Bryankin, N. Belov, P. S. Kambur, V. V. Kapustin, S. Zhuravkov","doi":"10.18321/ectj1472","DOIUrl":null,"url":null,"abstract":" An integrated method is proposed for examining the compositions of fluorine-bearing gaseous mixtures, which allows for determining the concentration of HF, F2, N2, O2, CO2, CF4, and C2F6 in these mixtures. The concentration of hydrogen fluoride is determined by its sorption on sodium fluoride followed by the determination of the fluoride ion by the potentiometric method. The lower threshold of determination of hydrogen fluoride is found to be 0.09 vol.%. The concentrations of N2, O2, CO2, CF4, and C2F6 are determined by the gas chromatographic method using a thermal conductivity detector. The proposed gas-chromatography method offers a quantitative measurement of the concentration of N2, O2, CO2, CF4, and C2F6 at the lower limits of detection of 0.008, 0.012, 0.011, 0.009, and 0.019 vol.%, respectively. Based on the developed method, the compositions of a standard fluorine-nitrogen (10 vol.%) and anodic gas samples, synthesized in a laboratory electrolyzer at the National Research Tomsk Polytechnic University and in an industrial electrochemical reactor at JSC Siberian Chemical Plant (Russia), are studied.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

 An integrated method is proposed for examining the compositions of fluorine-bearing gaseous mixtures, which allows for determining the concentration of HF, F2, N2, O2, CO2, CF4, and C2F6 in these mixtures. The concentration of hydrogen fluoride is determined by its sorption on sodium fluoride followed by the determination of the fluoride ion by the potentiometric method. The lower threshold of determination of hydrogen fluoride is found to be 0.09 vol.%. The concentrations of N2, O2, CO2, CF4, and C2F6 are determined by the gas chromatographic method using a thermal conductivity detector. The proposed gas-chromatography method offers a quantitative measurement of the concentration of N2, O2, CO2, CF4, and C2F6 at the lower limits of detection of 0.008, 0.012, 0.011, 0.009, and 0.019 vol.%, respectively. Based on the developed method, the compositions of a standard fluorine-nitrogen (10 vol.%) and anodic gas samples, synthesized in a laboratory electrolyzer at the National Research Tomsk Polytechnic University and in an industrial electrochemical reactor at JSC Siberian Chemical Plant (Russia), are studied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究含氟混合气体的综合方法
提出了一种检查含氟气体混合物组成的综合方法,该方法可以确定这些混合物中HF、F2、N2、O2、CO2、CF4和C2F6的浓度。先用氟化氢吸附在氟化钠上测定其浓度,再用电位法测定氟离子。测定氟化氢的下限为0.09 vol.%。采用热导检测器气相色谱法测定N2、O2、CO2、CF4和C2F6的浓度。所建立的气相色谱法可定量测定N2、O2、CO2、CF4和C2F6的浓度,检测下限分别为0.008、0.012、0.011、0.009和0.019 vol.%。根据所开发的方法,研究了在托木斯克国立研究理工大学的实验室电解槽和俄罗斯西伯利亚化学工厂的工业电化学反应器中合成的标准氟氮(10体积%)和阳极气体样品的组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Eurasian Chemico-Technological Journal
Eurasian Chemico-Technological Journal CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
1.10
自引率
20.00%
发文量
6
审稿时长
20 weeks
期刊介绍: The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.
期刊最新文献
Technology for Isolation Essential Oil from the Buds of Populus balsamifera L. Obtaining Edible Pullulan-based Films with Antimicrobial Properties The Synthesis and in vitro Study of 9-fluorenylmethoxycarbonyl Protected Non-Protein Amino Acids Antimicrobial Activity Optimization of the Porous Structure of Carbon Electrodes for Hybrid Supercapacitors with a Redox Electrolyte Based on Potassium Bromide Influence of Annealing Time on the Optical and Electrical Properties of Tin Dioxide-Based Coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1