Surface Plasmon Resonance-based Ultra-broadband Solar Thermal Absorber Design Using Graphene Material

IF 3.3 4区 物理与天体物理 Q2 CHEMISTRY, PHYSICAL Plasmonics Pub Date : 2023-09-07 DOI:10.1007/s11468-023-02033-2
Abdulkarem H. M. Almawgani, Bo Bo Han, Arun Kumar U, Ammar Armghan, Muhammad Irfan, Shobhit K. Patel
{"title":"Surface Plasmon Resonance-based Ultra-broadband Solar Thermal Absorber Design Using Graphene Material","authors":"Abdulkarem H. M. Almawgani,&nbsp;Bo Bo Han,&nbsp;Arun Kumar U,&nbsp;Ammar Armghan,&nbsp;Muhammad Irfan,&nbsp;Shobhit K. Patel","doi":"10.1007/s11468-023-02033-2","DOIUrl":null,"url":null,"abstract":"<div><p>A three-layer type of solar absorber is developed with a graphene layer to observe a perfect absorption level in this work. The top (resonator) uses Iron (Fe), the middle (substrate) layer is Indium Antimonide (InSb), and the base (ground) layer with Aluminium (Al). The proposed design can perform the absorption percentages of 94.3% at the 2800 nm ultra-broadband bandwidth range. Absorption levels greater than 95% (96.6%) at a 1470 nm and a 750 nm bandwidth above 97% (98.1%). The contribution steps of the design and the respective absorption A, reflectance R, and transmittance T outputs are explored. AM performances and parameter variations of thickness and width of a base layer, resonator, and substrate thickness can be studied. Moreover, chemical potential and incidence angle changing from 0 to 60 degrees with a 10-degree separation are also presented. The comparison table and electric amount testing sections are also included in a recent paper.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"19 2","pages":"793 - 801"},"PeriodicalIF":3.3000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11468-023-02033-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11468-023-02033-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A three-layer type of solar absorber is developed with a graphene layer to observe a perfect absorption level in this work. The top (resonator) uses Iron (Fe), the middle (substrate) layer is Indium Antimonide (InSb), and the base (ground) layer with Aluminium (Al). The proposed design can perform the absorption percentages of 94.3% at the 2800 nm ultra-broadband bandwidth range. Absorption levels greater than 95% (96.6%) at a 1470 nm and a 750 nm bandwidth above 97% (98.1%). The contribution steps of the design and the respective absorption A, reflectance R, and transmittance T outputs are explored. AM performances and parameter variations of thickness and width of a base layer, resonator, and substrate thickness can be studied. Moreover, chemical potential and incidence angle changing from 0 to 60 degrees with a 10-degree separation are also presented. The comparison table and electric amount testing sections are also included in a recent paper.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于石墨烯材料表面等离子共振的超宽带太阳能吸热器设计
这项研究开发了一种三层型太阳能吸收器,其中的石墨烯层可观察到完美的吸收水平。顶层(谐振器)使用铁(Fe),中间层(基底)使用锑化铟(InSb),底层(接地)使用铝(Al)。在 2800 纳米超宽带带宽范围内,拟议设计的吸收率可达 94.3%。在 1470 nm 和 750 nm 的带宽范围内,吸收率高于 95% (96.6%),高于 97% (98.1%)。探讨了设计的贡献步骤以及各自的吸收率 A、反射率 R 和透射率 T 输出。可以研究 AM 性能以及基底层厚度和宽度、谐振器和衬底厚度的参数变化。此外,还介绍了化学势和入射角从 0 度到 60 度的变化情况,入射角间距为 10 度。最近的一篇论文还包含了对比表和电量测试部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasmonics
Plasmonics 工程技术-材料科学:综合
CiteScore
5.90
自引率
6.70%
发文量
164
审稿时长
2.1 months
期刊介绍: Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons. Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.
期刊最新文献
Comparative Analysis of Two Different MIM Configurations of a Plasmonic Nanoantenna On the Transmission Line Analogy for Modeling Plasmonic Nanowire Circuits Terahertz-Multiplexed Metallic Metasurfaces for Enhanced Trace Sample Absorption Plasmonic Characteristics of LiF Filled Slab Waveguide in Isotropic Plasma Environment Synthesis, Characterization, and Modeling of Reduced Graphene Oxide Supported Adsorbent for Sorption of Pb(II) and Cr(VI) Ions from Binary Mixture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1