A comparison of linear consistent correction methods for first-order SPH derivatives

IF 1.4 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Proceedings of the ACM on computer graphics and interactive techniques Pub Date : 2023-08-16 DOI:10.1145/3606933
Lukas Westhofen, S. Jeske, Jan Bender
{"title":"A comparison of linear consistent correction methods for first-order SPH derivatives","authors":"Lukas Westhofen, S. Jeske, Jan Bender","doi":"10.1145/3606933","DOIUrl":null,"url":null,"abstract":"A well-known issue with the widely used Smoothed Particle Hydrodynamics (SPH) method is the neighborhood deficiency. Near the surface, the SPH interpolant fails to accurately capture the underlying fields due to a lack of neighboring particles. These errors may introduce ghost forces or other visual artifacts into the simulation. In this work we investigate three different popular methods to correct the first-order spatial derivative SPH operators up to linear accuracy, namely the Kernel Gradient Correction (KGC), Moving Least Squares (MLS) and Reproducing Kernel Particle Method (RKPM). We provide a thorough, theoretical comparison in which we remark strong resemblance between the aforementioned methods. We support this by an analysis using synthetic test scenarios. Additionally, we apply the correction methods in simulations with boundary handling, viscosity, surface tension, vorticity and elastic solids to showcase the reduction or elimination of common numerical artifacts like ghost forces. Lastly, we show that incorporating the correction algorithms in a state-of-the-art SPH solver only incurs a negligible reduction in computational performance.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":" ","pages":"1 - 20"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3606933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

A well-known issue with the widely used Smoothed Particle Hydrodynamics (SPH) method is the neighborhood deficiency. Near the surface, the SPH interpolant fails to accurately capture the underlying fields due to a lack of neighboring particles. These errors may introduce ghost forces or other visual artifacts into the simulation. In this work we investigate three different popular methods to correct the first-order spatial derivative SPH operators up to linear accuracy, namely the Kernel Gradient Correction (KGC), Moving Least Squares (MLS) and Reproducing Kernel Particle Method (RKPM). We provide a thorough, theoretical comparison in which we remark strong resemblance between the aforementioned methods. We support this by an analysis using synthetic test scenarios. Additionally, we apply the correction methods in simulations with boundary handling, viscosity, surface tension, vorticity and elastic solids to showcase the reduction or elimination of common numerical artifacts like ghost forces. Lastly, we show that incorporating the correction algorithms in a state-of-the-art SPH solver only incurs a negligible reduction in computational performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一阶SPH导数线性一致性校正方法的比较
广泛使用的光滑粒子流体动力学(SPH)方法的一个众所周知的问题是邻域不足。在表面附近,由于缺乏相邻粒子,SPH插入剂无法准确捕捉下方的场。这些误差可能会在模拟中引入重影力或其他视觉伪影。在这项工作中,我们研究了三种不同的常用方法来校正一阶空间导数SPH算子,达到线性精度,即核梯度校正(KGC)、移动最小二乘法(MLS)和再生核粒子法(RKPM)。我们提供了一个彻底的理论比较,其中我们注意到上述方法之间的强烈相似性。我们通过使用合成测试场景的分析来支持这一点。此外,我们在边界处理、粘度、表面张力、涡度和弹性固体的模拟中应用了校正方法,以展示减少或消除常见的数值伪像,如重影力。最后,我们表明,在最先进的SPH求解器中加入校正算法只会导致计算性能的可忽略不计的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Using Deep Learning to Increase Eye-Tracking Robustness, Accuracy, and Precision in Virtual Reality. A Multilevel Active-Set Preconditioner for Box-Constrained Pressure Poisson Solvers Motion In-Betweening with Phase Manifolds NeuroDog A Unified Analysis of Penalty-Based Collision Energies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1