A vision-based approach for rolling contact fatigue evaluation in twin-disc tests on a railway wheel steel

IF 1.6 Q4 MATERIALS SCIENCE, COATINGS & FILMS Tribology - Materials, Surfaces & Interfaces Pub Date : 2020-10-01 DOI:10.1080/17515831.2020.1825062
I. Bodini, C. Petrogalli, A. Mazzù, S. Pasinetti, T. Kato, T. Makino
{"title":"A vision-based approach for rolling contact fatigue evaluation in twin-disc tests on a railway wheel steel","authors":"I. Bodini, C. Petrogalli, A. Mazzù, S. Pasinetti, T. Kato, T. Makino","doi":"10.1080/17515831.2020.1825062","DOIUrl":null,"url":null,"abstract":"ABSTRACT A vision-based experimental methodology was developed for monitoring the surface state evolution of specimens during twin-disc rolling contact tests, aimed at providing information for identifying the damage phenomena. The system is based on a high-speed camera and three laser pointers for illuminating the specimen surface. Images of the specimen surface are acquired and processed, allowing the definition of synthetic surface state indexes, as well as the section profiles of the surface. The vision system was applied to alternated dry–wet rolling–sliding contact tests on railway wheel steel specimens, highlighting its effectiveness in the damage evaluation. The potential of the section profile reconstruction as a tool for surface topology analysis was shown.","PeriodicalId":23331,"journal":{"name":"Tribology - Materials, Surfaces & Interfaces","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17515831.2020.1825062","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology - Materials, Surfaces & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17515831.2020.1825062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT A vision-based experimental methodology was developed for monitoring the surface state evolution of specimens during twin-disc rolling contact tests, aimed at providing information for identifying the damage phenomena. The system is based on a high-speed camera and three laser pointers for illuminating the specimen surface. Images of the specimen surface are acquired and processed, allowing the definition of synthetic surface state indexes, as well as the section profiles of the surface. The vision system was applied to alternated dry–wet rolling–sliding contact tests on railway wheel steel specimens, highlighting its effectiveness in the damage evaluation. The potential of the section profile reconstruction as a tool for surface topology analysis was shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉的铁路轮钢双盘滚动接触疲劳评价方法
摘要开发了一种基于视觉的实验方法,用于监测双圆盘滚动接触试验中试样的表面状态演变,旨在为识别损伤现象提供信息。该系统基于一台高速摄像机和三个用于照射样本表面的激光指示器。采集和处理样本表面的图像,从而可以定义合成表面状态指数以及表面的截面轮廓。该视觉系统被应用于铁路车轮钢试样的干湿交替滚动-滑动接触试验,突出了其在损伤评估中的有效性。显示了截面轮廓重建作为表面拓扑分析工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tribology - Materials, Surfaces & Interfaces
Tribology - Materials, Surfaces & Interfaces MATERIALS SCIENCE, COATINGS & FILMS-
CiteScore
2.80
自引率
0.00%
发文量
15
期刊最新文献
Sliding wear behaviour of austempered ductile iron, boron steel and AISI 1045 steel of similar hardness: effect of microstructure, yield strength, and strain hardening Tribological aspects of magnesium matrix composites: a review of recent experimental studies Thin TiN coating on NiTi substrate through PVD method: improvement of the wear resistance Optimization of the Si3N4 coating formation through plasma spraying on Inconel 738 Traction performance modeling of worn footwear with perpendicular treads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1