Electrochemical detection of simple alkanes by utilizing a solid-state zirconia-based gas sensor

Q4 Materials Science Chimica Techno Acta Pub Date : 2023-02-14 DOI:10.15826/chimtech.2023.10.1.09
A. Kalyakin, A. Volkov
{"title":"Electrochemical detection of simple alkanes by utilizing a solid-state zirconia-based gas sensor","authors":"A. Kalyakin, A. Volkov","doi":"10.15826/chimtech.2023.10.1.09","DOIUrl":null,"url":null,"abstract":"Solid-state gas sensors composed of complex oxide electrolytes offer great potential for analyzing various atmospheres at high temperatures. While relatively simple gas mixtures (H2O+N2, O2+N2) have been successfully studied by means of ZrO2-based sensors, the precise detection of more complex compounds represents a challenging task. In this work, we present our findings regarding the analysis of lower alkanes (CH4, C2H6, and C3H8) mixed with nitrogen as an inert gas, utilizing an amperometric ZrO2-based sensor. This sensor, serving as an electrochemical cell with a diffusion barrier, was tested at 500–600 °C to measure the limiting current, which depends on the gas composition and can be further used as a basis for calibration curves. In addition, the diffusion coefficients of the specified gas mixtures were successfully found and compared with references, confirming the applicability of the fabricated sensor for studying diffusion processes in wide concentration and temperature ranges.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimica Techno Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/chimtech.2023.10.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state gas sensors composed of complex oxide electrolytes offer great potential for analyzing various atmospheres at high temperatures. While relatively simple gas mixtures (H2O+N2, O2+N2) have been successfully studied by means of ZrO2-based sensors, the precise detection of more complex compounds represents a challenging task. In this work, we present our findings regarding the analysis of lower alkanes (CH4, C2H6, and C3H8) mixed with nitrogen as an inert gas, utilizing an amperometric ZrO2-based sensor. This sensor, serving as an electrochemical cell with a diffusion barrier, was tested at 500–600 °C to measure the limiting current, which depends on the gas composition and can be further used as a basis for calibration curves. In addition, the diffusion coefficients of the specified gas mixtures were successfully found and compared with references, confirming the applicability of the fabricated sensor for studying diffusion processes in wide concentration and temperature ranges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用固态氧化锆基气体传感器电化学检测烷烃
由复杂氧化物电解质组成的固态气体传感器为分析高温下的各种大气提供了巨大的潜力。虽然已经通过基于ZrO2的传感器成功地研究了相对简单的气体混合物(H2O+N2、O2+N2),但精确检测更复杂的化合物是一项具有挑战性的任务。在这项工作中,我们介绍了我们关于使用基于电流型ZrO2的传感器分析与氮气作为惰性气体混合的低级烷烃(CH4、C2H6和C3H8)的发现。该传感器作为一个具有扩散屏障的电化学电池,在500–600°C下进行了测试,以测量极限电流,这取决于气体成分,可以进一步用作校准曲线的基础。此外,还成功地找到了特定气体混合物的扩散系数,并与参考文献进行了比较,证实了所制造的传感器适用于研究宽浓度和温度范围内的扩散过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chimica Techno Acta
Chimica Techno Acta Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
67
审稿时长
4 weeks
期刊最新文献
Investigation of the reaction of dimedone with aromatic aldehydes in the presence of copper oxide nanoparticles Dispersive surface free energy of adsorbents modified by supramolecular structures of heterocyclic compounds Cationic amphiphilic meroterpenoids: synthesis, antibacterial, antifungal and mutagenic activity Photoelectrochemical properties of Pt- and Ir-modified graphitic carbon nitride Features of electronic states in the vicinity of band gap and atomic structure of Ta- and Nb-doped Li7La3Zr2O12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1