UYARLANABİLİR KONFOR ÖZELLİKLERİNE SAHİP PASİF GÜNDÜZ SOĞUTUCU PAMUKLU KUMAŞLAR

Q4 Engineering Tekstil ve Muhendis Pub Date : 2022-12-30 DOI:10.7216/teksmuh.1222496
Nazife KORKMAZ MEMİŞ, Sibel Kaplan
{"title":"UYARLANABİLİR KONFOR ÖZELLİKLERİNE SAHİP PASİF GÜNDÜZ SOĞUTUCU PAMUKLU KUMAŞLAR","authors":"Nazife KORKMAZ MEMİŞ, Sibel Kaplan","doi":"10.7216/teksmuh.1222496","DOIUrl":null,"url":null,"abstract":"Passive daytime radiative cooling materials have attracted increasing attention due to their great potential for energy saving and the possibility to meet the need for smart clothes. However, the practical application of passive daytime cooling material in the textile industry is greatly affected by comfort components and also physical/mechanical properties that require optimization. Herein, it was aimed to develop a thermoregulating fabric using zinc oxide nanoparticles (ZnO), which provide dynamic and passive control of the infrared transmission, by adapting to the ambient temperature. For this aim, the cotton fabric was coated with a nanocomposite treatment composed of ZnO nanoparticles and temperature-responsive shape memory polyurethane (SMPU) matrix, obtaining strong scattering effects to control the wideband transmission of thermal radiation and also adaptive comfort features based on shape memory function. By reflecting sunlight of SMPU-ZnO nanocomposite coating, the cotton fabric can reach an average temperature drop of ∼ 2.2°C and 0.4°C compared to the raw ones under direct sunlight and also indoor at 40°C, respectively. Also, SMPU and SMPU-ZnO nanocomposite coated cotton fabric exhibited dynamic air and water vapour permeability hence adaptive comfort features. Owing to passive cooling and also adaptive comfort features besides the simple production process, this smart fabric is promising to be widely used in sports or protective clothing areas.","PeriodicalId":35281,"journal":{"name":"Tekstil ve Muhendis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tekstil ve Muhendis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7216/teksmuh.1222496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Passive daytime radiative cooling materials have attracted increasing attention due to their great potential for energy saving and the possibility to meet the need for smart clothes. However, the practical application of passive daytime cooling material in the textile industry is greatly affected by comfort components and also physical/mechanical properties that require optimization. Herein, it was aimed to develop a thermoregulating fabric using zinc oxide nanoparticles (ZnO), which provide dynamic and passive control of the infrared transmission, by adapting to the ambient temperature. For this aim, the cotton fabric was coated with a nanocomposite treatment composed of ZnO nanoparticles and temperature-responsive shape memory polyurethane (SMPU) matrix, obtaining strong scattering effects to control the wideband transmission of thermal radiation and also adaptive comfort features based on shape memory function. By reflecting sunlight of SMPU-ZnO nanocomposite coating, the cotton fabric can reach an average temperature drop of ∼ 2.2°C and 0.4°C compared to the raw ones under direct sunlight and also indoor at 40°C, respectively. Also, SMPU and SMPU-ZnO nanocomposite coated cotton fabric exhibited dynamic air and water vapour permeability hence adaptive comfort features. Owing to passive cooling and also adaptive comfort features besides the simple production process, this smart fabric is promising to be widely used in sports or protective clothing areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
被动式日间辐射冷却材料由于其巨大的节能潜力和满足智能服装需求的可能性而越来越受到关注。然而,被动日间冷却材料在纺织行业的实际应用在很大程度上受到舒适性部件以及需要优化的物理/机械性能的影响。本文旨在开发一种使用氧化锌纳米颗粒(ZnO)的调温织物,该织物通过适应环境温度来提供对红外透射的动态和被动控制。为此,用ZnO纳米颗粒和温度响应性形状记忆聚氨酯(SMPU)基质组成的纳米复合材料处理棉织物,获得了强大的散射效应,以控制热辐射的宽带传输,并基于形状记忆功能获得了自适应舒适性特征。SMPU-ZnO纳米复合涂层通过反射阳光,使棉布的平均温度下降 ∼ 与阳光直射下和室内40°C下的原始温度相比,分别为2.2°C和0.4°C。此外,SMPU和SMPU-ZnO纳米复合涂层棉织物表现出动态的空气和水蒸气渗透性,因此具有自适应的舒适性特征。这种智能织物除了生产过程简单外,还具有被动冷却和自适应舒适功能,有望广泛应用于运动服或防护服领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tekstil ve Muhendis
Tekstil ve Muhendis Engineering-Industrial and Manufacturing Engineering
CiteScore
0.40
自引率
0.00%
发文量
12
期刊最新文献
PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS COLOR REMOVAL OF DISPERSE DYEING WASTE WATER BY OZONE IN AN EXAMPLE DYEHAUSE GÖMLEK GİYİMİ İLE İLGİLİ TÜKETİCİ KONFOR DENEYİMLERİNİN VE TÜKETİCİ BEKLENTİLERİNİN İNCELENMESİ ENVIRONMENTALLY FRIENDLY ACOUSTIC PANEL DESIGN FROM CURTAIN WASTE YARN PULL-OUT AND DROP WEIGHT IMPACT PERFORMANCE OF SHEAR THICKENING FLUID IMPREGNATED BALLISTIC FABRICS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1