Bayesian Learning of Graph Substructures

IF 4.9 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Bayesian Analysis Pub Date : 2022-01-01 DOI:10.1214/22-BA1338
W. V. Boom, M. Iorio, A. Beskos
{"title":"Bayesian Learning of Graph Substructures","authors":"W. V. Boom, M. Iorio, A. Beskos","doi":"10.1214/22-BA1338","DOIUrl":null,"url":null,"abstract":"Graphical models provide a powerful methodology for learning the conditional independence structure in multivariate data. Inference is often focused on estimating individual edges in the latent graph. Nonetheless, there is increasing interest in inferring more complex structures, such as communities, for multiple reasons, including more effective information retrieval and better interpretability. Stochastic blockmodels offer a powerful tool to detect such structure in a network. We thus propose to exploit advances in random graph theory and embed them within the graphical models framework. A consequence of this approach is the propagation of the uncertainty in graph estimation to large-scale structure learning. We consider Bayesian nonparametric stochastic blockmodels as priors on the graph. We extend such models to consider clique-based blocks and to multiple graph settings introducing a novel prior process based on a Dependent Dirichlet process. Moreover, we devise a tailored computation strategy of Bayes factors for block structure based on the Savage-Dickey ratio to test for presence of larger structure in a graph. We demonstrate our approach in simulations as well as on real data applications in finance and transcriptomics.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-BA1338","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

Graphical models provide a powerful methodology for learning the conditional independence structure in multivariate data. Inference is often focused on estimating individual edges in the latent graph. Nonetheless, there is increasing interest in inferring more complex structures, such as communities, for multiple reasons, including more effective information retrieval and better interpretability. Stochastic blockmodels offer a powerful tool to detect such structure in a network. We thus propose to exploit advances in random graph theory and embed them within the graphical models framework. A consequence of this approach is the propagation of the uncertainty in graph estimation to large-scale structure learning. We consider Bayesian nonparametric stochastic blockmodels as priors on the graph. We extend such models to consider clique-based blocks and to multiple graph settings introducing a novel prior process based on a Dependent Dirichlet process. Moreover, we devise a tailored computation strategy of Bayes factors for block structure based on the Savage-Dickey ratio to test for presence of larger structure in a graph. We demonstrate our approach in simulations as well as on real data applications in finance and transcriptomics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图子结构的贝叶斯学习
图形模型为学习多元数据中的条件独立性结构提供了一种强大的方法。推理通常集中在估计潜在图中的各个边上。尽管如此,由于多种原因,人们对推断更复杂的结构(如社区)越来越感兴趣,包括更有效的信息检索和更好的可解释性。随机块模型为检测网络中的此类结构提供了强大的工具。因此,我们建议利用随机图理论的进步,并将其嵌入到图形模型框架中。这种方法的结果是图估计中的不确定性传播到大规模结构学习中。我们将贝叶斯非参数随机块模型视为图上的先验。我们将这种模型扩展到考虑基于团的块,并扩展到引入基于依赖狄利克雷过程的新先验过程的多个图设置。此外,我们设计了一种基于Savage Dickey比率的块结构贝叶斯因子的定制计算策略,以测试图中是否存在较大结构。我们在模拟以及金融和转录组学中的真实数据应用中展示了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
期刊最新文献
Functional Concurrent Regression Mixture Models Using Spiked Ewens-Pitman Attraction Priors. How Trustworthy Is Your Tree? Bayesian Phylogenetic Effective Sample Size Through the Lens of Monte Carlo Error. A General Bayesian Functional Spatial Partitioning Method for Multiple Region Discovery Applied to Prostate Cancer MRI. Posterior Shrinkage Towards Linear Subspaces Dynamic Functional Variable Selection for Multimodal mHealth Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1