{"title":"Factor Investing with Classification-Based Supervised Machine Learning","authors":"Edward N. W. Aw, Joshua Jiang, John Q. Jiang","doi":"10.3905/joi.2022.1.220","DOIUrl":null,"url":null,"abstract":"There are two types of supervised machine learning (SML): regression and classification. In this study, the authors propose classification-based machine learning algorithms for factor investing with artificial neural networks in which the cross section of stock returns is grouped into five categories: strong buy, buy, neutral, sell, and strong sell. Their empirical out-of-sample results demonstrate some advantages of classification-based machine learning relative to regression-based learning in which the actual stock returns denote the response variable. The classification-based models also deliver slight outperformance relative to the ordinary least squares model, although the outperformance is not statistically significant. Furthermore, the out-of-sample results show that “deep” learning with multilayers of neuron layers cannot outperform a less sophisticated “shallow” learning for both classification-based and regression-based SML algorithms. Their findings suggest that market noise, common in the financial markets, during the training process overwhelms the nonlinear association uncovered in the machine learning process; and the classification of the cross section of stock returns may have reduced some of the noise.","PeriodicalId":45504,"journal":{"name":"Journal of Investing","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Investing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/joi.2022.1.220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
There are two types of supervised machine learning (SML): regression and classification. In this study, the authors propose classification-based machine learning algorithms for factor investing with artificial neural networks in which the cross section of stock returns is grouped into five categories: strong buy, buy, neutral, sell, and strong sell. Their empirical out-of-sample results demonstrate some advantages of classification-based machine learning relative to regression-based learning in which the actual stock returns denote the response variable. The classification-based models also deliver slight outperformance relative to the ordinary least squares model, although the outperformance is not statistically significant. Furthermore, the out-of-sample results show that “deep” learning with multilayers of neuron layers cannot outperform a less sophisticated “shallow” learning for both classification-based and regression-based SML algorithms. Their findings suggest that market noise, common in the financial markets, during the training process overwhelms the nonlinear association uncovered in the machine learning process; and the classification of the cross section of stock returns may have reduced some of the noise.