Chronic Kidney Disease Prediction Using ML-Based Neuro-Fuzzy Model

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2022-12-15 DOI:10.1142/s0219467823400132
S. Praveen, V. E. Jyothi, Chokka Anuradha, K. VenuGopal, V. Shariff, S. Sindhura
{"title":"Chronic Kidney Disease Prediction Using ML-Based Neuro-Fuzzy Model","authors":"S. Praveen, V. E. Jyothi, Chokka Anuradha, K. VenuGopal, V. Shariff, S. Sindhura","doi":"10.1142/s0219467823400132","DOIUrl":null,"url":null,"abstract":"Nowadays, in most countries, the most dangerous and life threatening infection is Chronic Kidney Disease (CKD). A progressive malfunctioning of the kidneys and less effectiveness of the kidney are considered CKD. CKD can be a life threatening disease if it continues for longer period of time. Prediction of chronic disease in early stage is very crucial so that sustainable care of the patient is taken to prevent menacing situations. Most of the developing countries are being affected by this deadly disease and treatment applied for this disease is also very expensive, here in this paper, a Machine Learning (ML)-positioned approach called Neuro-Fuzzy model is used for prediction belonging to CKD. Based on the image processing technique, fibrosis proportions are detected in the kidney tissues. It also builds a system for identifying and detection of CKD at an early stage. Neuro-Fuzzy model is based on ML which can detect risk of CKD patients. Compared with other conventional methods such as Support Vector Machine (SVM) and K-Nearest Neighbor (KNN), the proposed method of this paper — ML-based Neuro-Fuzzy logic method — obtained 97% accuracy in CKD prediction. This method can be evaluated based on various parameters such as Precision, Accuracy, Recall and F1-Score in CKD prediction. From the results, the patients having high risk of chronic disease can be predicted.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467823400132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2

Abstract

Nowadays, in most countries, the most dangerous and life threatening infection is Chronic Kidney Disease (CKD). A progressive malfunctioning of the kidneys and less effectiveness of the kidney are considered CKD. CKD can be a life threatening disease if it continues for longer period of time. Prediction of chronic disease in early stage is very crucial so that sustainable care of the patient is taken to prevent menacing situations. Most of the developing countries are being affected by this deadly disease and treatment applied for this disease is also very expensive, here in this paper, a Machine Learning (ML)-positioned approach called Neuro-Fuzzy model is used for prediction belonging to CKD. Based on the image processing technique, fibrosis proportions are detected in the kidney tissues. It also builds a system for identifying and detection of CKD at an early stage. Neuro-Fuzzy model is based on ML which can detect risk of CKD patients. Compared with other conventional methods such as Support Vector Machine (SVM) and K-Nearest Neighbor (KNN), the proposed method of this paper — ML-based Neuro-Fuzzy logic method — obtained 97% accuracy in CKD prediction. This method can be evaluated based on various parameters such as Precision, Accuracy, Recall and F1-Score in CKD prediction. From the results, the patients having high risk of chronic disease can be predicted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ml的神经模糊模型预测慢性肾脏疾病
目前,在大多数国家,最危险和威胁生命的感染是慢性肾脏疾病(CKD)。肾脏的进行性功能障碍和肾功能下降被认为是慢性肾病。慢性肾病如果持续时间较长,可能是一种危及生命的疾病。在早期阶段预测慢性疾病是非常重要的,以便采取可持续的护理病人,以防止危险的情况。大多数发展中国家都受到这种致命疾病的影响,治疗这种疾病也非常昂贵,在本文中,一种名为神经模糊模型的机器学习(ML)定位方法被用于预测属于CKD。基于图像处理技术,检测肾脏组织的纤维化比例。建立了CKD早期识别和检测系统。基于ML的神经模糊模型可以检测CKD患者的风险。与支持向量机(SVM)和k近邻(KNN)等传统方法相比,本文提出的基于ml的神经模糊逻辑方法对CKD的预测准确率达到97%。该方法可根据CKD预测的Precision、Accuracy、Recall和F1-Score等参数进行评价。根据结果,可以预测慢性疾病的高危患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Design and Implementation of Novel Hybrid and Multiscale- Assisted CNN and ResNet Using Heuristic Advancement of Adaptive Deep Segmentation for Iris Recognition Dwarf Mongoose Optimization with Transfer Learning-Based Fish Behavior Classification Model MRCNet: Multi-Level Residual Connectivity Network for Image Classification Feature Matching-Based Undersea Panoramic Image Stitching in VR Animation Multi-disease Classification of Mango Tree Using Meta-heuristic-based Weighted Feature Selection and LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1